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Simulation Modeling

I Introduction

In many situations a modeler is unable to construct an analytic (symbolic) model adequately
explaining the behavior being observed because of its complexity or the intractability of the
proposed explicative model. Yet if it is necessary to make predictions about the behavior, the
modeler may conduct experiments (or gather data) to investigate the relationship between
the dependent variable(s) and selected values of the independent variable(s) within some
range. We constructed empirical models based on collected data in Chapter 4. To collect
the data, the modeler may observe the behavior directly. In other instances, the behavior
might be duplicated (possibly in a scaled-down version) under controlled conditions, as we
will do when predicting the size of craters in Section 14.4.

In some circumstances, it may not be feasible either to observe the behavior directly
or to conduct experiments. For instance, consider the service provided by a system of
elevators during morning rush hour. After identifying an appropriate problem and defining
what is meant by good service, we might suggest some alternative delivery schemes, such
as assigning elevators to even and odd floors or using express elevators. Theoretically, each
alternative could be tested for some period of time to determine which one provided the
best service for particular arrival and destination patterns of the customers. However, such
a procedure would probably be very disruptive because it would be necessary to harass
the customers constantly as the required statistics were collected. Moreover, the customers
would become very confused because the elevator delivery system would keep changing.
Another problem concerns testing alternative schemes for controlling automobile traffic in
a large city. It would be impractical to constantly change directions of the one-way streets
and the distribution of traffic signals to conduct tests.

In still other situations, the system for which alternative procedures need to be tested
may not even exist yet. An example is the situation of several proposed communications
networks, with the problem of determining which is best for a given office building. Still
another example is the problem of determining locations of machines in a new industrial
plant. The cost of conducting experiments may be prohibitive. This is the case when an
agency tries to predict the effects of various alternatives for protecting and evacuating the
population in case of failure of a nuclear power plant.

In cases where the behavior cannot be explained analytically or data collected directly,
the modeler might simulate the behavior indirectly in some manner and then test the various
alternatives under consideration to estimate how each affects the behavior. Data can then
be collected to determine which alternative is best. An example is to determine the drag
force on a proposed submarine. Because it is infeasible to build a prototype, we can build

185
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186 Chapter 5 Simulation Modeling

a scaled model to simulate the behavior of the actual submarine. Another example of this
type of simulation is using a scaled model of a jet airplane in a wind tunnel to estimate the
effects of very high speeds for various designs of the aircraft. There is yet another type of
simulation, which we will study in this chapter. This Monte Carlo simulation is typically
accomplished with the aid of a computer.

Suppose we are investigating the service provided by a system of elevators at morning
rush hour. In Monte Carlo simulation, the arrival of customers at the elevators during the
hour and the destination floors they select need to be replicated. That is, the distribution
of arrival times and the distribution of floors desired on the simulated trial must portray a
possible rush hour. Moreover, after we have simulated many trials, the daily distribution
of arrivals and destinations that occur must mimic the real-world distributions in proper
proportions. When we are satisfied that the behavior is adequately duplicated, we can
investigate various alternative strategies for operating the elevators. Using a large number
of trials, we can gather appropriate statistics, such as the average total delivery time of a
customer or the length of the longest queue. These statistics can help determine the best
strategy for operating the elevator system.

This chapter provides a brief introduction to Monte Carlo simulation. Additional studies
in probability and statistics are required to delve into the intricacies of computer simulation
and understand its appropriate uses. Nevertheless, you will gain some appreciation of this
powerful component of mathematical modeling. Keep in mind that there is a danger in
placing too much confidence in the predictions resulting from a simulation, especially if
the assumptions inherent in the simulation are not clearly stated. Moreover, the appearance
of using large amounts of data and huge amounts of computer time, coupled with the fact
the lay people can understand a simulation model and computer output with relative ease,
often leads to overconfidence in the results.

When any Monte Carlo simulation is performed, random numbers are used. We discuss
how to generate random numbers in Section 5.2. Loosely speaking, a ““sequence of random
numbers uniformly distributed in an interval m to n”’ is a set of numbers with no apparent
pattern, where each number between m and n can appear with equal likelihood. For example,
if you toss a six-sided die 100 times and write down the number showing on the die each time,
you will have written down a sequence of 100 random integers approximately uniformly
distributed over the interval 1 to 6. Now, suppose that random numbers consisting of six
digits can be generated. The tossing of a coin can be duplicated by generating a random
number and assigning it a head if the random number is even and a tail if the random number
is odd. If this trial is replicated a large number of times, you would expect heads to occur
about 50% of the time. However, there is an element of chance involved. It is possible that a
run of 100 trials could produce 51 heads and that the next 10 trials could produce all heads
(although this is not very likely). Thus, the estimate with 110 trials would actually be worse
than the estimate with 100 trials. Processes with an element of chance involved are called
probabilistic, as opposed to deterministic, processes. Monte Carlo simulation is therefore
a probabilistic model.

The modeled behavior may be either deterministic or probabilistic. For instance, the
area under a curve is deterministic (even though it may be impossible to find it precisely).
On the other hand, the time between arrivals of customers at the elevator on a particular day
is probabilistic behavior. Referring to Figure 5.1, we see that a deterministic model can be
used to approximate either a deterministic or a probabilistic behavior, and likewise, a Monte
Carlo simulation can be used to approximate a deterministic behavior (as you will see with

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



5.1 Simulating Deterministic Behavior: Area Under a Curve 187

Figure 5.1

The behavior and the model Behavior Model
can be either deterministic

= Deterministic 2 Deterministic
or probabilistic. Probabilistic Probabilistic

a Monte Carlo approximation to an area under a curve) or a probabilistic one. However, as
we would expect, the real power of Monte Carlo simulation lies in modeling a probabilistic
behavior.

A principal advantage of Monte Carlo simulation is the relative ease with which it can
sometimes be used to approximate very complex probabilistic systems. Additionally, Monte
Carlo simulation provides performance estimation over a wide range of conditions rather
than a very restricted range as often required by an analytic model. Furthermore, because
a particular submodel can be changed rather easily in a Monte Carlo simulation (such as
the arrival and destination patterns of customers at the elevators), there is the potential of
conducting a sensitivity analysis. Still another advantage is that the modeler has control over
the level of detail in a simulation. For example, a very long time frame can be compressed or
a small time frame expanded, giving a great advantage over experimental models. Finally,
there are very powerful, high-level simulation languages (such as GPSS, GASP, PROLOG,
SIMAN, SLAM, and DYNAMO) that eliminate much of the tedious labor in constructing
a simulation model.

On the negative side, simulation models are typically expensive to develop and operate.
They may require many hours to construct and large amounts of computer time and memory
to run. Another disadvantage is that the probabilistic nature of the simulation model limits
the conclusions that can be drawn from a particular run unless a sensitivity analysis is
conducted. Such an analysis often requires many more runs just to consider a small number
of combinations of conditions that can occur in the various submodels. This limitation
then forces the modeler to estimate which combination might occur for a particular set of
conditions.

© Cengage Learning

Simulating Deterministic Behavior:
Area Under a Curve

In this section we illustrate the use of Monte Carlo simulation to model a deterministic
behavior, the area under a curve. We begin by finding an approximate value to the area
under a nonnegative curve. Specifically, suppose y = f(x) is some given continuous
function satisfying 0 < f(x) < M overthe closedintervala < x < b. Here, the number M
is simply some constant that bounds the function. This situation is depicted in Figure 5.2.
Notice that the area we seek is wholly contained within the rectangular region of height M
and length b — a (the length of the interval over which f is defined).

Now we select a point P(x, y) at random from within the rectangular region. We will
do so by generating two random numbers, x and y, satisfyinga <x <band0 <y < M,
and interpreting them as a point P with coordinates x and y. Once P(x, y) is selected, we
ask whether it lies within the region below the curve. That is, does the y-coordinate satisfy
0 <y < f(x)?If the answer is yes, then count the point P by adding 1 to some counter.
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188 Chapter 5 Simulation Modeling

Points are not counted when they
lie above the curve y = f(x)

4

Figure 5.2

The area under the M
nonnegative curve y =f(x)

over a < x < b is contained

within the rectangle of

height M and base length

b—a.

> <

Points below the curve
“T" are counted

> X

|
|
|
|
a b
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Two counters will be necessary: one to count the total points generated and a second to count
those points that lie below the curve (Figure 5.2). You can then calculate an approximate
value for the area under the curve by the following formula:

area under curve  number of points counted below curve

area of rectangle - total number of random points

As discussed in the Introduction, the Monte Carlo technique is probabilistic and typically
requires a large number of trials before the deviation between the predicted and true values
becomes small. A discussion of the number of trials needed to ensure a predetermined level
of confidence in the final estimate requires a background in statistics. However, as a general
rule, to double the accuracy of the result (i.e., to cut the expected error in half), about four
times as many experiments are necessary.

The following algorithm gives the sequence of calculations needed for a general com-
puter simulation of this Monte Carlo technique for finding the area under a curve.

Monte Carlo Area Algorithm
Input Total number n of random points to be generated in the simulation.

Output AREA = approximate area under the specified curve y = f(x) over the given interval
a<x<b,where0 < f(x) < M.

Step 1 Initialize: COUNTER = 0.
Step 2 Fori =1,2,...,n,do Steps 3-5.

Step 3 Calculate random coordinates x; and y; that satisfya < x; <band0 < y; < M.

Step 4 Calculate f(x;) for the random x; coordinate.

Step5 If y; < f(x;), then increment the COUNTER by 1. Otherwise, leave COUNTER as is.
Step 6 Calculate AREA = M(b — a) COUNTER/n.
Step 7 OUTPUT (AREA)

STOP

Table 5.1 gives the results of several different simulations to obtain the area beneath
the curve y = cos x over the interval —7/2 < x < /2, where 0 < cosx < 2.

The actual area under the curve y = cosx over the given interval is 2 square units.
Note that even with the relatively large number of points generated, the error is significant.
For functions of one variable, the Monte Carlo technique is generally not competitive with
quadrature techniques that you will learn in numerical analysis. The lack of an error bound
and the difficulty in finding an upper bound M are disadvantages as well. Nevertheless, the
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5.1 Simulating Deterministic Behavior: Area Under a Curve 189

Table 5.1 Monte Carlo approximation to the area under
the curve y = cos x over the interval —7/2 < x < 1/2

Number Approximation Number Approximation
of points to area of points to area
100 2.07345 2000 1.94465
200 2.13628 3000 1.97711
300 2.01064 4000 1.99962
400 2.12058 5000 2.01429
500 2.04832 6000 2.02319
600 2.09440 8000 2.00669
700 2.02857 10000 2.00873
800 1.99491 15000 2.00978
900 1.99666 20000 2.01093
1000 1.96664 30000 2.01186

© Cengage Learning

Monte Carlo technique can be extended to functions of several variables and becomes more
practical in that situation.

Volume Under a Surface
Let’s consider finding part of the volume of the sphere
x2+y* 422 <1

that lies in the first octant, x > 0, y > 0, z > 0 (Figure 5.3).

The methodology to approximate the volume is very similar to that of finding the area
under a curve. However, now we will use an approximation for the volume under the surface
by the following rule:

volume under surface ~ number of points counted below surface in 1st octant

volume of box - total number of points

The following algorithm gives the sequence of calculations required to employ Monte Carlo
techniques to find the approximate volume of the region.

Figure 5.3 z

Volume of a sphere

x2 4+ y24 22 < 1thatliesin
the first octant, x>0, y > 0,
z>0

S
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190 Chapter 5 Simulation Modeling

Monte Carlo Volume Algorithm
Input Total number n of random points to be generated in the simulation.

Output VOLUME = approximate volume enclosed by the specified function, z = f(x, y) in the
first octant, x > 0,y > 0,z > 0.

Step 1 Initialize: COUNTER = 0.
Step 2 Fori =1,2,...,n,do Steps 3-5.

Step 3 Calculate random coordinates x;, y;, z; thatsatisfy 0 < x; <1,0<y; <1,0<z; <1.
(Ingeneral,a < x; <b,c <y; <d,0<z; <M))

Step 4 Calculate f(x;, y;) for the random coordinate (x;, y;).

Step 5 Ifrandomz; < f(x;, y;), thenincrement the COUNTER by 1. Otherwise, leave COUNTER
as is.

Step 6 Calculate VOLUME = M(d — ¢)(b — a)COUNTER/n.
Step 7 OUTPUT (VOLUME)
STOP

Table 5.2 gives the results of several Monte Carlo runs to obtain the approximate volume of
x2 + y2 +z2<1
that lies in the first octant, x > 0, y > 0,z > 0.

Table 5.2 Monte Carlo approximation
to the volume in the first octant under
the surface x2 + y2 + z2 <1

Number of points Approximate volume

100 0.4700

200 0.5950

300 0.5030

500 0.5140

1,000 0.5180

2,000 0.5120

5,000 0.5180
10,000 0.5234
20,000 0.5242

© Cengage Learning

The actual volume in the first octant is found to be approximately 0.5236 cubic units
(7r/6). Generally, though not uniformly, the error becomes smaller as the number of points
generated increases.

2.1 | PROBLEMS

1. Each ticket in a lottery contains a single ‘“‘hidden” number according to the following
scheme: 55% of the tickets contain a 1, 35% contain a 2, and 10% contain a 3. A
participant in the lottery wins a prize by obtaining all three numbers 1, 2, and 3. Describe
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5.2 Generating Random Numbers 191

an experiment that could be used to determine how many tickets you would expect to
buy to win a prize.

2. Two record companies, A and B, produce classical music recordings. Label A is a budget
label, and 5% of A’s new compact discs exhibit significant degrees of warpage. Label B
is manufactured under tighter quality control (and consequently more expensive) than
A, so only 2% of its compact discs are warped. You purchase one label A and one label
B recording at your local store on a regular basis. Describe an experiment that could be
used to determine how many times you would expect to make such a purchase before
buying two warped compact discs for a given sale.

3. Using Monte Carlo simulation, write an algorithm to calculate an approximation to
by considering the number of random points selected inside the quarter circle

Q:x2+y2=1,x20,y20
where the quarter circle is taken to be inside the square
S:0<x<land0=<y <1

Use the equation 77/4 = area Q /area S.

4. Use Monte Carlo simulation to approximate the area under the curve f(x) = /x, over
the interval 1 < x < 3.

5. Find the area trapped between the two curves y = x2 and y = 6 — x and the x- and
y-axes.

6. Using Monte Carlo simulation, write an algorithm to calculate that part of the volume
of an ellipsoid

X2 y2 Z2
— 4+ —4+ —<16
2 + 4 + 8 —
that lies in the first octant, x > 0, y > 0,z > 0.

7. Using Monte Carlo simulation, write an algorithm to calculate the volume trapped be-
tween the two paraboloids

z=8—x?>—y? and z=x>+43y?
Note that the two paraboloids intersect on the elliptic cylinder

x2+2y? =4

237" Generating Random Numbers

In the previous section, we developed algorithms for Monte Carlo simulations to find areas
and volumes. A key ingredient common to these algorithms is the need for random numbers.
Random numbers have a variety of applications, including gambling problems, finding an
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192 Chapter 5 Simulation Modeling

area or volume, and modeling larger complex systems such as large-scale combat operations
or air traffic control situations.

In some sense a computer does not really generate random numbers, because computers
employ deterministic algorithms. However, we can generate sequences of pseudorandom
numbers that, for all practical purposes, may be considered random. There is no single best
random number generator or best test to ensure randomness.

There are complete courses of study for random numbers and simulations that cover
in depth the methods and tests for pseudorandom number generators. Our purpose here is
to introduce a few random number methods that can be utilized to generate sequences of
numbers that are nearly random.

Many programming languages, such as Pascal and Basic, and other software (e.g.,
Minitab, MATLAB, and EXCEL) have built-in random number generators for user
convenience.

Middle-Square Method

The middle-square method was developed in 1946 by John Von Neuman, S. Ulm, and
N. Metropolis at Los Alamos Laboratories to simulate neutron collisions as part of the
Manhattan Project. Their middle-square method works as follows:

1. Start with a four-digit number x,, called the seed.
2. Square it to obtain an eight-digit number (add a leading zero if necessary).

3. Take the middle four digits as the next random number.

Continuing in this manner, we obtain a sequence that appears to be random over the
integers from 0 to 9999. These integers can then be scaled to any interval a to b. For example,
if we wanted numbers from O to 1, we would divide the four-digit numbers by 10,000. Let’s
illustrate the middle-square method.

Pick a seed, say xo = 2041, and square it (adding a leading zero) to get 04165681. The
middle four digits give the next random number, 1656. Generating 13 random numbers in
this way yields

n|0 1 2 3 4 5 6 7 8 9 10 11 12

Xn | 2041 1656 7423 1009 0180 0324 1049 1004 80 64 40 16 2

We can use more than 4 digits if we wish, but we always take the middle number of
digits equal to the number of digits in the seed. For example, if x, = 653217 (6 digits), its
square 426,692,449,089 has 12 digits. Thus, take the middle 6 digits as the random number,
namely, 692449,

The middle-square method is reasonable, but it has a major drawback in its tendency
to degenerate to zero (where it will stay forever). With the seed 2041, the random sequence
does seem to be approaching zero. How many numbers can be generated until we are almost
at zero?
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5.2 Generating Random Numbers 193

Linear Congruence

The linear congruence method was introduced by D. H. Lehmer in 1951, and a majority
of pseudorandom numbers used today are based on this method. One advantage it has over
other methods is that seeds can be selected that generate patterns that eventually cycle (we
illustrate this concept with an example). However, the length of the cycle is so large that the
pattern does not repeat itself on large computers for most applications. The method requires
the choice of three integers: a, b, and c. Given some initial seed, say xo, we generate a
sequence by the rule

Xnt+1 = (a X x, + b) mod(c)

where c is the modulus, a is the multiplier, and b is the increment. The qualifier mod(c) in
the equation means to obtain the remainder after dividing the quantity (a x x, + b) by c.
For example, witha = 1, b = 7, and ¢ = 10,

Xp+1 = (1 X x,, + 7) mod(10)

means X, is the integer remainder upon dividing x,, 4+ 7 by 10. Thus, if x,, = 115, then
Xp4+1 = remainder (%) =2.

Before investigating the linear congruence methodology, we need to discuss cycling,
which is a major problem that occurs with random numbers. Cycling means the sequence
repeats itself, and, although undesirable, it is unavoidable. At some point, all pseudorandom
number generators begin to cycle. Let’s illustrate cycling with an example.

If we set our seed at xo = 7, we find x; = (1 x 7+ 7) mod(10) or 14 mod(10), which
is 4. Repeating this same procedure, we obtain the sequence

7,4,1,8,5,2,9,6,3,0,7.4,...

and the original sequence repeats again and again. Note that there is cycling after 10 numbers.
The methodology produces a sequence of integers between 0 and ¢ — 1 inclusively before
cycling (which includes the possible remainders after dividing the integers by ¢). Cycling
is guaranteed with at most ¢ numbers in the random number sequence. Nevertheless, ¢ can
be chosen to be very large, and a and b can be chosen in such a way as to obtain a full set of
¢ numbers before cycling begins to occur. Many computers use ¢ = 23! for the large value
of c. Again, we can scale the random numbers to obtain a sequence between any limits a
and b, as required.

A second problem that can occur with the linear congruence method is lack of statistical
independence among the members in the list of random numbers. Any correlations between
the nearest neighbors, the next-nearest neighbors, the third-nearest neighbors, and so forth
are generally unacceptable. (Because we live in a three-dimensional world, third-nearest
neighbor correlations can be particularly damaging in physical applications.) Pseudoran-
dom number sequences can never be completely statistically independent because they are
generated by a mathematical formula or algorithm. Nevertheless, the sequence will appear
(for practical purposes) independent when it is subjected to certain statistical tests. These
concerns are best addressed in a course in statistics.
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194 Chapter 5 Simulation Modeling

5.7 | PROBLEMS

1. Use the middle-square method to generate
a. 10 random numbers using xo, = 1009.
b. 20 random numbers using xo = 653217.
¢. 15 random numbers using x, = 3043.
d. Comment about the results of each sequence. Was there cycling? Did each sequence
degenerate rapidly?
2. Use the linear congruence method to generate
a. 10 random numbers usinga = 5,5 = 1, and ¢ = 8.
b. 15 random numbers usinga = 1, b = 7, and ¢ = 10.
c. 20 random numbers usinga = 5, b = 3, and ¢ = 16.
d

. Comment about the results of each sequence. Was there cycling? If so, when did it
occur?

N>

PROJECTS

Ch

4

1. Complete the requirement for UMAP module 269, “Monte Carlo: The Use of Random
Digits to Simulate Experiments,” by Dale T. Hoffman. The Monte Carlo technique is
presented, explained, and used to find approximate solutions to several realistic problems.
Simple experiments are included for student practice.

2. Refer to “Random Numbers” by Mark D. Myerson, UMAP 590. This module discusses
methods for generating random numbers and presents tests for determining the random-
ness of a string of numbers. Complete this module and prepare a short report on testing
for randomness.

3. Write a computer program to generate uniformly distributed random integers in the
interval m < x < n, where m and n are integers, according to the following algorithm:

Step1 Letd = 23! and choose N (the number of random numbers to generate).
Step 2 Choose any seed integer Y such that
100000 < Y < 999999

Step3 Leti =1.

Step4 LetY = (15625Y + 22221) mod(d).
Step5 Let X; = m + floor[(n —m 4+ 1)Y/d].
Step 6 Incrementi by 1:i =i 4 1.

Step7 Goto Step4unlessi = N + 1.

Here, floor [p] means the largest integer not exceeding p.
For most choices of Y, the numbers X, X5, ... form a sequence of (pseudo)random
integers as desired. One possible recommended choice is ¥ = 568731. To generate
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INTRODUCTION

Ineveryday life, itis seen that 5
wait for getting their tickets or sq
line, in order to maintain a proper disc
idle) until additional people arrive. Here t

Another example is represented byl
atypist’s desk. Again, the letters represe
and the typist represents the server, A
illustrated by a machine breakdown sit
machine represents a customer callin g for the service of a
repairman. These examples show that the term customer
may be interpreted in various number of ways. It is also
noticed that a service may be performed either by moving
the serverto the customer or the customer to the server.
Thus, it is concluded that waiting lines are not only

the lines of human beings but also the aeroplanes seeking
to land at busy airport, ships to be unloaded, machine
parts to be assembled, cars waiting for traffic lights to
tun green, customers waiting for attention in a shop or
supermarket, calls arriving at a telephone switch-board,
jobs waiting for processing by a computer, or anything
else that require work ‘done on and for it are also the
examples of costly and critical delay situations. Further,
itis also observed that arriving units may form one line
and be serviced through only one station (as in a doctor’s
clinic), may form one line and be served through several
stations (as in a barber shop), may form several lines and
be served through as many stations (e.g. at check out
counters of supermarket).

number of peo

etters arriving at
nt the customers
third example is
uation. A broken

Servers may be in parallel or in series. When in .

parallel, the arriving customers may form a sin gle queue
asshown in Fig. 1 (a, b, ¢) or individual queues in front of

each server as is common in big post-offices. Service

times may be constant or variable and customers may be
;erved singly or in batches (like passengers boarding a
us).

Fig. 2 illustrates how a machine- shop may be
thought of as a system of queues forming in front of a
humber of service centres, the arrows between the centres
indicating possible routes for jobs processed. in the shpp.
jA‘Tfivals at a service centre are either new jobs coming
into the system or jobs, partially processed, from some
other service centre. Departures from a service centre
May become the arrivals at another service centre or may

. ple arrive at a cinema ticket window. If th i
metimes do without it. Unde . If the people arrive

ipline. Occasionally,
he arriving people

“too frequently” they will have to
d s'uch circumstances, the only alternative is to form a queue, called the waiting
it also happens that the person issuing tickets will have to wait (i.e. remains
are called the customers and the person issuing the tickets is called a server.

~ Arrivals Exit from

system

Queue

Service points

Fig. 1 (a). Queueing system with'single queue and single service station.

Arrivals Queue .
| . | % | —»
: Service points

Fig. 1 (b). Queueing system with single queue and several service stations.

Exit from
system

Arrivals

system

Service points

Fig. 1 (c). Queueing system with several queues and several service stations,
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QT2
leave the system entirely, when processing on these items is complete. . £ queues with finding, €.g. ll‘le propabl_ll_ty dl§tnbUti0n
Queueing theory is concerned with the statistical description of the behav10u;']0 Cli the probability distl’lblltl'on ) wamrlg tlm_e fo
of the numbe:; in the queue from which the mean and variance of queue leng{ anl research problems involving queues, mvemgﬂtors
customer, or the distribution of a server’s busy periods can be found_- In operatlo_ﬂiliCS and must determine how _changes may be Made
must measure the existing System to make an objective assessment of its char.ac'lerls ould be. and whether, in th(? li gl}t of the cost
the system, what effects of various kinds of changes in the system’s'charactenstlcg wstud}; rr,lust be constructed in this kind of ap
in the systems, changes should be made to it. A model of thg queueing sys-tem ungers
the results of queueing theory are required to obtain the .
characteristics of the mode] and to assess the effects of changes, rivals

such as the addition of an extra server or a reduction in mean
service time,

S incumd
alysig ang o

Departyy,
Service Centre 2 |—<Partures
Perhaps the most im

: | 4 r
portant general fact emergin_g from the Service Centre 3
theory is that the degree of congestion in a queueing system

A\ 4

Service Centre

gularity in the system y X ' < Departuyes
Thus congestion depends not just on mean rates at which Service Centre 4 i M‘\
customers arrive and are served and may be reduced without ; hine shop as a complex queus,
altering mean rates by regularizing arrivals or service times, or Fig. 2. A machine shop
both where this can be achieved.
QUEUEING SYSTEM

A queueing system can be completely described by
(@) the input (or arrival pattern)

(c) the ‘queue discipline (e) Size of a population S
(b) the service mechanism (or service pattern)

(d) customer’s behaviour (f) Maximum length of queue,

escribes the way in which the customers arrive and join the system. Generally, the |
his not worth making the prediction, Thus, the arrival pattern cap best be describeg

(@) The input (or arrival pattern) : The inputd

Customers arrive in a more orless random fashion whic
in terms of probabilities and consequently the probability
distribution  for inter-arrival ¢

mes (the time between two
successive arrivals) or the distrib

Queueing System
ution of number of customers Queue of waiting line
arriving in unit time mugt be defined. <\*\,

Servicing
. Station '
The present cha queueing systems
in which the cugt

1 or ‘Completely :
ion (see Distribution of Arrivals, p, QT/4)..Other 000 :> :>
types of arrival patterns may also be observed in practice that have
been studied in queueing theory. Two such patt i Arriving units

Systems Departures
rvice station.

() arrivals are of regular intervals;
(if) there is general distribution (
(b) The service mechanism (o
What the statistica] distribution of service time
variable with the same distribution for a]] arriva
waiting for repairing) each with different se
service time which are important in practic
Queues.with the negative exponential servic
In the present chapter, only those que
(Gamma)’ probability distributions (see p.

(¢) The queue discipline : The Queue discipline is the rule determining t
behaviour while waiting, and the manner in which they are chogep for service
according to which the customers are served i the order of thejr arrival, Fo
shop, at cinemq ticket windows, q railway stations, ete. If the order jg rev

Case of a big godown where the iterns Which come Jast are taken out fir.
“service in random order” or “might is right”,

A Queueing system with single se

pattern) : It ig specified when jt i known how many customers
S, and when service ig available. It is trye in most situations that $ervice time is a random
ls, bl'lt cases occur where tllere are clearly two or more classes of Customers (e.g. machines
rv1ce‘t1me cllstnbut1on. Service time may be constant or arandom varigple, Distributions of
€ are ‘negatiye exponential distributiop’ and the re]ate

o BEaCiie d‘E istribution’.
€ time distribution are studied in the following sections, ik S G
ueing systems are discussed in-which the Service tj

ST 1¢e time fo]

can be served at a time,

OWs the ‘Exponential and Erlang

“first come, first serve('i”’
pline is observed at a ration
. served” discipline, as in the
difficy]t Queue disciplipe o handle might be

queue discipline, For example, the
e first Pline.
Jirst come, last seryeq> than wip, Sirst come, first served’



_analysis of queueing model becomes more involved.

QUEUEING THEORY

FIFO — First In, First Oyt or FCF,

IS = First Come, First Served.

SIRO — Service in Random Order. . pilae O

This chapter shall pe conc

i : emn
which are served in the org ed onl

er in which
Jirst serveqd’

Y with the customers
Il.ley arrive at the service
discipline.
in four ways :
(i) Balking. A ¢
& ustomer may leave (he queue because the

queue is 100 long and h .
eh : ;
not sufficient Wwaiting SPaceaS No time to wait, or there is

(i) Reneging. This occurs wh

€n a waiting customer 1
the queue due to impatienc : e

€.

Prioriti i icati

SCWCdll];:sf: In certain applications, some customers are

e etore others regardless of their order of arrival.
€ customers have Ppriority over others.

(iv) Jockeying. Customers may jockey from one waiting line
to another. It may be seen that this occurs in the
supermarket.

(e) Size of a population :
customers may be very large or of
booking counter the total number of potential passengers is so
].a:ge_that although theoretically finite it can be regarded as
infinity .for .all practical purposes. The assumption of infinite
population is very convenient for analysing a queuing model.
However, this assumption is not valid where the customer group is
rep_re:semed by few machines in workshop that require operator
facility from time to time. If the population size is finite then the

(iii)

The collection of potential
a moderate size . In a railway

(N Maximum length of a queue : Sometimes only a finite
number of customers are allowed to stay in the system although
the total number of customers in the population may or may not be
finite. For example, a doctor may have appointments with k
patients in a day. If the number of patients asking for appointment
exceeds k, they are not allowed to join the queue. Thus, although
the size of the population is infinite, the maximum number
permissible in the system is £.

Q.1. What do you understand by queue discipline and service
process? [Madras (MBA) 2006]

2. Explain briefly the main characteristics of queueing system.
[Delhi (MBA) 2005; Annamalai (MBA) 2002]

3. Describe the fundamental components of a queueing process
and give suitable examples. [C.A. (Nov) 1992]

4. List the factors that constitute the basic elements o_f a queuging
model. For each of these enumerate the allematu{les pOSIPtI)?_
Represent this diagramatically to cover all possible
implimentations of a queueing model. ., [IGNOU 1999 (Dec.)]

5. What is queueing theory? In what type of Isituations it can be

i ively? Discuss giving exampies.
applied successively Eelhi (MBA) 2009]

i tem
6. Describe the fundamental components of a queueing syste
and give suitable example. [GBTU (MBAII Sem.) 2011]

7. Discuss the essential features of queueing system. .
[UJNTU (MBA Il Sem.) 2011]

8. What is Queuing Theory? Also explain Queueing System.
[GBTU (MBAII Sem.) 2012]

-

QT3

B s

QUEUEING PROBLEM

In a specified queueing system, the problem is to determine the
following :

(a) Probability distribution of queue length : When the
nature of probability distributions of the arrival and service
patterns is given, the probability distribution of queue length can
be obtained. Further, we can also estimate the probability that
there is no queue.

(b) Probability distribution of waiting time of customers :
We can find the time spent by a customer in the queue before the
commencement of his service which is called his waiting time.
The total time spent by him in the system is the waiting time plus
service time.

(¢) The busy period distribution : We can estimate the
probability distribution of busy periods. If we suppose that the
server is free initially and customer arrives, he will be served
immediately. During his service time, some more customers will
arrive and will be served in their turn. This process will continue in
this way until no customer is left unserved and the server becomes
free again. Whenever this happens, we say that a busy period has
just ended. On the other hand, during idle periods no customer is
present in the system. A busy period and the idle period following
it together constitute a busy cycle. The study of the busy period is
of great interest in cases where technical features of the server
and his capacity for continuous operations must be taken into
account.

TRANSIENT AND STEADY STATES

Queueing theory analysis involves the study of a system’s
behaviour over time. A system is said to be in “transient state’
when its operating characteristics (behaviour) are dependent on
time. This usually occurs at the early stages of the operation of the
system where its behaviour is still dependent on the initial
conditions. However, since we are mostly interested in the “long
run” behaviour of the system, mainly the attention has been paid
toward “steady state’’ results.

A steady state condition is said to prevail when the
behaviour of the system becomes independent of time. Let F,(t)
denote the probability that there are n units in the system at time 7.
In fact, the change of P,(r) with respect to t is described by the
derivative [dP,(f)/ dt] or P,,' (). Then the queueing system is said
to become ‘stable’ eventually, in the sense that the probability
P,(1) is independent of time, that is, remains the same as time
passes (1 — o). Mathematically, in steady state

lim P,(f) = P, (independent of t)
f— oo

lim 9P, _ dP, ) i
P i R s )= O
In some situations, if the arrival rate of the system is larger
than its service rate, a steady state cannot be reached regardless of
the length of the elapsed time. In fact, in this case the queue length
will increase. with time and theoretically it could build upto
infinity. Such case is called the “explosive state”. (If A >, no
steady state.) ]
In this chapter, only the steady state analysis will be
considered. We shall not treat the ‘transient’ and ‘explosive’
states.
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GR.-\P}H(‘AL METHOD
1. Solution p

Simple ing
Vanables can b

. The outlin
.\I(*r l.
SJ(‘{.\ r

rocedure

ar programming problems of W
e easily solved by graphical method.
es of graphical procedure are as follows :
Consider cach inequality-constraint as an equation. |
Plot each equation on the graph, as each one wil
geometrically represent a straight line, .
Shade the feasible region. Every point on the line will
Satisfy  he cquaﬁnn of the line, lf . 1h'e
nequality-constraint corresponding to that line s <
then the region below the line Iving in the first quadrant
(due 10 non-negativity of variables) is shaded. For the
inoquality constraint with * > sign, the region above the
line in the first quadrant is shaded. The points lying in the
common  region will  satisfy all the  constrainls
simultaneously. The common region thus obtained is called
the feasible region.

Choose the convenient value of z (say = 0) and plot the
objective function line.

Puli the objective function line until the extreme points of
the feasible region. In the maximization case, this line
will stop farthest from the origin and passing through at
feast one comer of the feasible region. In the
mnimization case, this line will stop nearest to the origin
and passing through at least one comer of the feasible
region

Read the coordinates of the extreme point(s) selected in
Step 5. and find the maximum or mininum (as the case
may be) value of z. The following examples will make
the graphical procedure clear.

Q.1.

o decision

Step 3.

What /s meant by linear programming problem 7 Give brief
descipton of the problem with illustrations. How the same can
be soived graphically. What are the basic characteristics of a
inear programming problem ?
2. Eyglen brefiy the graphical method of solving linear
programmng problems. State its advantages and limitations.

[JNTU IV B. Tech.) | Sem. Feb. 2007)
Virta the a'gorthm of graphical solution for LP models,

[UNTU (MCA TI) 2004]

W

4, Show on agraph the foliowng
{ij Unbounded eolution space (i) No feasible space,
[JNTU (IV B. Tech.) | Sem, Feb, 2007

§. Define iso-profit £nd s0-Cost ines. How do these help 1o obtain
a 1oiution to an LP problem?

[JNTU (IV B. Tech,) | Sem, June 2010]

2. Solution of Properly Behaved Problems
- Example 1 Find ageometrical interpretation apd 5ol
g well for the follising LPpro blem i
V Mkt :— 1“' t 5".3 m,bjf—'ﬂ 10 restrictions
xyr 2ey £2000 5, 453 51500, 4, <600, g
S a0, gy 2l w0 a0 p ; :
| S Skl o, L T R
aphical Solu el Sip
Sk ‘gl‘;f 1. (T grégh the dnequaliipconstraints), Coider two
- gty perpendicutar ines OX, ad 0K, assinenofchpipg,
- viooely; Ay POHUE L6 -25) in the posive Qadring iy

) LlNEARPROG;;ﬁm Gp i
an p-negativity restrictions X 20, , g‘!
y Saus{y n(i'Z = ZOOOs PUIX; =0 ’ fmd xl = 2001(’)2&%)0'T
: h that OL=2000 1y, . I

k a point L suc Ol s
T g Si0units = 2. Similarly, agiy S,
suilable sc]ﬂ 0'0 and mark another point M such that g M <

4
13
= P E 10gy @
find X7 'Oin ihe points Land M . This line wijy rerpre}OOt)'
FO:’XJO +20, = 2000 as shown 1n Fig. 1. _t-§°l‘1t te
equation Xy s

certainly S2
plot the ine Xy

equation-

o[ 500 1000 1500

Fig. 1

Clearly, any point P lying on or below " the % ;
x; +2xy = 2000 will satisfy the inequality x; +2x, <o ;

we take a point (500, 500), i.., x; =500, x, =500’th°“‘..%hav5
500+ 2 x 500 < 2000, which is true here). S
Similar procedure is now adoped to plot the other two lie;.
X +x, =1500and x, =600as shown in the Fig. 2
and Fig. 3, respectively. Any point on or below the lines §
x +x,;=1500 and x, =600 will also satisfy other tw £
inequalities : x; +x, <1500,and x, <600, respectively.

15& R
1000

500

Ax

O] 500 1000 1500\

Fig. 2
x]ﬂ
1000
X,=600
600 <
50{7
'
7
ol x
500 1000 1500 2000 i ;
Fig. 3 {
Sft'p 2. »l3 i, e 3
Combining lhel 'nd the feqyipe region or solution g ;

Figs. 1, 2 ang 3 together. A commo?



R PROGRAMMING PROBLEY

‘CD is obtained (see Fig. 4) whic
i pequalit) constraints :

X+ A

Line for Maximum
value of 2

x; +2x, £2000, x; +x, <1500, x, <600,
d non-negativity restrictions as *120,x, 20. Hence any

tin the shaded area (including is boundary) gives a feasible
tion to the given LPP.

Step 3. Find the co-ordinates of the corner points of feasible
- Step 4. Locate the corner point of o
culating the value of z for each corner
by adopting the following procedure).

ptimal solution either by
point O, A,B C,and D

- Here, the problem is to find the point or points in the feasible
‘_ 1on (collection of all feasible solutions) which maximize(s) the

© 2,2=3x; +5x, is a straight line and any point on it gives the
same value of z. Also, it should be noted that the lines
;i;responding to different values of z are parallel, because the
dient (- 3/5) of the line z =3x, +5x, remains the same
1 oughout. For z=0,i.e,0= 3x; +5x,, means a line which
| LX) -5 -500
determine the ratio — = —— = ———— |
; X 3 300
Mark the point £ moving 500 units distance from the origin
n the negative side of X ,-axis. Then find the points F ‘Su.Ch that
EF =300 units in the positive direction of X ,-axis. Joining the
point Fand O, draw the line 3x; +5x, =0.Now goon df-'l_W'“.g
the lines parallel to this line until at least a line is found which is
larthes( [rom (he origin but passes through at least one corner of
e feasible region at which the maximum value of z is attained. It
5 also possible that such a line may coincide with one of the edge
feasible region. In that case, every point on that edge gives the
imum value of z, thus having alternative solutions.
~ Inthis example, maximum value of  is attained at the comner
Point B(1000, 500), which is the point of intersection fﬁf l{llcj
i *t2x; =2000 and i, +.x, =1500. Hence, tlfcqsl(;f(?ulre
ution is x, =1000, x, =500and max. value z = Rs.5500.

1S @ sey f points sausfying

NOTE the number of vertices of feasible region is small, find the
coordinates of vertices. As in above example, O =(0,0),

A=(1500,0), B=(1000,500), C= (800,600} D - (0,600) are
obtained by solving the pair of lines whose intersections are lhesﬁ
points, respectively The value of 7 corresponding to these paints w:

be z,-0,7, -4500,2, =5500, z =4500, z,=3000. CteaLv
2y = 5500 is maximum for the point B 1000 ,500) which gwesj

« Tequired solution.

Example 2 Consider the problem :
Max.z =y, + X, subject 1o the constraints, .
X+ 2x, <2000,x, +x, <1500, x, £600andx, , X, >0.
['AS (Main) 2007 type]

Graphical Solution This problem is of the same type as
discussed carlier except the objective function is slightly changed
here. The feasible region will be similar to that of the above
problem. Fig. 5 shows the objective function lines of the problem
for three different valuesz; ,z, ,zj0f . )

Itis clear from Fig. 5 that Z, is the maximum value of.z .l} is
quite interesting that the line z, representing the obJCCFch
function lies along the edge AB of the polygon of feasible
solutions. This indicates that the values of x; andx, which
maximize z are not unique, but any point on the edge AB of
OABCD polygon will give the optimum value of z . The maximum
value of z.is always unique, but there will be an infinite number of
feasible solutions which give unique value of z. Thus, two corners
Aand B as well as any other point on the line AB (segment) will
give optimal solution of this problem.

N N

O™ 500 1000 15002000~

X,

Z, 'z, 'z, z4

Fig. 5

It should be noted here that if a linear programming problem
has more than one optimum solutions, there exist alternative
optimum solutions. And, one of the optimum solutions will be
corresponding  to  the  corner point B, e,

x; =1000, x; =500 with maximum profitz = Rs. 1500.

Example 3 Solverthe Jollowing LP problem graphically :
Max. z =8000x, + 7000x, subject to he constraints : =
3.\'| + X, 566. A+ X, 545. .\'1 5.20,.\:1 <40 ¢/l
2 2 L F
and X, Xy 20, ’

Solution First, plot the lines 33, +x, =66 X, =45,

X
xy = 20and x, = 40and then shade the feasible/ragén as shown in
Fig. 6.




 bougin .L‘,x(hmnd)uunp
“Rs. 5 each and there are only 0y, 41 yaila

0o v 9 iedd one o, EOBSITAGL £ ed). S,

=20

~Maximum point
0.5,343)
i =0

Line for maximum

Fig. 6
Draw 2 dotted line 50001, +7000x =0 for z=0 and
sontme to draw the lines till a point is obtained which is farthest
from the origin but passing through at least one of thc. corners (.)f
¢ (leasible) region. Fig. 6 shows that this pomnt 1s
- 34-5) which is the pointof intersection of lines
3 +x, =06andx, + 1, =45,

Hence, 2 is maximum forx; =10-5andx, =34.5.,
Max

the shade

Po-s

$=3000x10-5 + 7000 x 34 -5=Rs. 325000,
Example 4

Ofies ar R

Old hens can be bought at Rs. 2 eacl and young
S each. The old hens lay 3 eggs per week and the young
© €225 per week, cach egg being worth 30 paise. A Jien
fYoung or old) cosis Re. | perweek to feed. | haye only Rs, 80 1
sperd for hens, how many of each kind should Tbuy 10 givea profit
of more than Ps_ ¢ per weel, assuming that I canpoy house more

em. 2011, 2002)

{INTU (B. Tech, I, CS & Engg.) 1.8
Solution Formulation, Let x; be the number of old heps and
X the number of young hens o e bought,

Since old hens |:

2y 3 eggs per week
€288 pet week, the 1014l number of egg
. g

= 33X, +51,

oney {ny

o
than 2 hens

and the yound gpeg lay 5

S obtained per week wil| be
Consequently, the cos of each egp beip,
gain willbe= Ry, 0. 4y 31 +51,),

Total expenditure for krdm;jh! + X4 ) hens
Feach will be = Rs.1.¢ G +a,),

£ 30 paise, (he lota]

atthe rage o Re,

Thus, il profit £ earped Perweek will b

2= Total gain - Toyg Expenditure

=0-30(3x, 5 51,) Uy 4y)
=050 x5 = 000, (objective flan)

. Since old bens can be bougiit ar ks, 2 Ohey gy

bile 1,
£ heng,

: { . iy L TEE "”Ufﬁh.&\i"
e pogtraing is - 35 Ky S 80,
Aba, since it Nt pog
tings, X, '»?7‘3':. 4y el iy
Ak, sinee the Pt 3 it 16 Be
means that g Profit functiom 7 (5 14 §

bible to oS mope then () heng o
12 T aly

e an R 6, i

s p Ay ; e N '""‘

" Mitkintizey b gy, i:
0'14’3_;3&

— :
R e

T Liﬁ;e__r’i_ PROGRAM . ]

T m@.’.«.‘«_&q%l‘"dﬂ 19

S,

s ible to purchase negativea Uang Sy
. itisnotpossible ©P . m‘“’o{h *P
/Pg‘::’ > Ny
refore Ay = omes P ‘
" the problem g ize the profit fyp...
Finally, 50 s {0 Maximi p Unctjqy
Find 1) anC 2 — 0-10x; subject to the congjy
220300 e 41, €20, and X,

0,x, 29

v 0 'y 3
Antg; |
Mg |

1 Solution. Plot the straight lineg 2, .

Graphical Solt h and shade the feaipr Eoaz “
. =20 on the grap : ible i,

and x; 42 7 ‘ :

shown in Fig. T

2, 4952

X2 4

0. 4 8 12 1620\ 24 28 32 36 4
Fig. 7

0

The feasible region is OBEC . The coordinateg of the exry,
points of the feasible region are ;

0=(0,0),C=(20, 0), B=(0,16), and E=(20/3,40l3).
The values of 7 at these vertices are j
2,=0,2, =0-50x0—0-10><20=-—2,
2 =0-50><16—0-10><0=8,
2 =0-50x339-0-10x?=6.

zis Rs. 8 which oceurs at
to the given problem &

 Since the maximum vaye of
point B=(Q, 16), the solution
f1=0,x, =16, max.z=Rs. §,

Hence only 14 young heng |

. should buy in order to geti
Maximum profiy of g

Rs. 8 (which ig obviously > 6). :
ExaAu}Phla 5 (Minimizatioy, problem) Consider the probler:
linimize =15y, + 2:5x, Subject to the constr ainfs: .

T+ 3r, > 3, Btxp2g, X ,rﬂzﬂ

Gmphi(‘;ﬂ

Solugj
Probler jg giv on

. © Scometrical interpretation of ¥
“infig g |

¢ Minimum valye of zis

Xzﬂ




=3

3 iy o
(3 e Eop

OBLEy L —

3.5. This minimum is y¢
8 lines X, + 3x, =3 and X,

8 . ° PROGRAMMING PR

laineq R TN v
the . .
TXy =9 Pt of n

l‘-’r-“CClmn Bl
jye the minimum value of - Ow, hnlvirll © Unigue p(,i:‘ll:f) Examp]e 8 (Problem which is not completely normal)
‘ulmneousl)’- the optimum Solution i . £ these wo equations Maximize - = _ X1+ 2x, subject to the constraints *
1 0 =312x; =172 and mip TX tx, Sh-x; +2x, <4, andy, |, x, 20.
Gmphica]- Solution jp Some EXC(fi){i‘ 35, g:'lplhlcal Solution The problem is solved graphically in
.~ The following examples ghy, that the Onal Cageq .

. ; Te are .
ses which must be taken jp, consme:ﬁ ¢ EXceptiony]
schnique for sOIVIng LP problems g ' *deration i genery]
ixample 6 (Problem hayy;, ‘
ox 2= 3%, +2x5 subject 1o th

e Constrqip
_x: —Xz Sl., xl +,X-_,

23, and

Fig. 11

In Fig. 11, the line of objective function coincides with t.he
edge of Az, of the region of feasible solutions. Thus, every point
(¥, . x) lying on this edge (- X) +2x, =4), which is going to

infinity on the right gives us z =4, and is therefore an optimal
solution.

Example 9 (Problem with inconsistent system of constraints)
Maximize 7 = 3x,

= 2x,, subject to the constraints

X +x, <1 2x; +2x, 24, and Xp, x,20.
Graphical Solution The
epresenting the graphically in Fig. 12.
en parallel to itself in the
some points in the region

problem is represented
It is clear from this figure that the line r

objective function can be moved far ey
irection of increasing z, and still have
feasible solutions.

Hence z can be made arbitrarily large, and the problem has no
nite maximum value of z. Such problems are said to have
unbounded solutions. _

~ Infinite profit in practical problems of linear programming
not be expected. If LP problem has been formulated by
Ommitting some mistake, it may lead to an unbounded solution.

<0, and ry )

t . Ny \\% Fig. 12
s raphical Solution In t\f\\‘i\ \\\E“\\\\\\ﬁz’ The figure shows that there is no point (

ample 6. it has been seen NN \\\ N satisfies both the constraints simu]_mneous.]y. Hen
& gaii N \i\‘f\\\\\‘ﬁi z has no solution because the constraints are inconsi
At both the variables can be AN \:}‘“_\:\}\\\ S

ade arbitrarily large as 7 is \NQ\\‘* ey s

xl B X'l) Which
ce the problem
stent.

N E Example 10 (Constraints can pe consistent and yet there
Incre : AR R ) ! ]
ased. In this example, an AR R may be no solution)

zmundid solution does not ff\»_t.f\ Max. 2=x| +x,, subject 10 =X 20,3, 41, 2 3, and

cessarily imply (hat all the %

oy 7 - X ,%, 20, 1AS (Main) 2007
Miriables  cpn be made X =3 A g 1 [ aair) el
; "t‘“fﬂﬁl} large as : Graphical Solution Fig. 13 shows that there is no
DProgches infinity. Here the ' b region of feasible solutions in this case. Hence there is ng

ey o . e 2 —> X

fanale 'y Temains constant 5 3

- Bshown i Fig. 10, Otgt— ! .
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L+ 3ay, subj
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ecttothe constrainty »
NIRRT + 2, =9,
G"‘Phical Solution Fig, 14 shows
Sinee there ;

Cisonly y single solution Point A
S nothing 1o he Maximized, 1o

IMportance, Sucht prohe
“Quations iy qhe constr,
Vanables. |1 the soluyg
feasible, the p

the graphical solution,
(20/!0,45/19
nee,aproble
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atints iy oy le
on iy feasible
roblem s no solution,
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Exnmplc 12 Afrm
of scrap Containing hig, quality per,
Yot decides that the serq
least 100 Guingqy of X-mer
Vemeral, The firm
(Aand B) in untim

Plans 1o Purchqge

alleqyy 200 Qitq]y

X an Ualizy Metq)

110 be Purchayeq Muyy
al and oy

more thay, 35
“an purchase 1y serap frop, o
ited quanyigey. 11

d oy q

Contggy, af

O Supplicyg
‘ ! e pru'rnml-(' X an y
metals in 1¢rms of weight in the SCrapy Supplie by A and
given below )
Metals Supptier A Supplicy
X 5% 154,
A Lo 20,

Y fA's yerap is Rs. 200 per quingq] and
The price of 4

Guingqyy of

: L a , B

intal. Formulate this problem as LPmodel%a\."._k{,
400 per 4t ,,1.'(1,~‘ quantitics that the firm shoyq bi om"&h%
fo drn-,»nun:;,'\,';(' minimize total purchase cost t o
suppliers so a:

Solution

» constraints :
qubiect to the cons 1
subjec v +xp, 2 200, TNt

~ +ix, < 35,
10 5
Y20, >0,
¥ of
, represent the number
where vy, x, repre

quintals of scrap frony
supplicrs Aand B, respectively,

b3
A

xl + SXZ:4OO

Feasible Region

80F (100, 100)

X 1x,=200

80 120 160 200 240 280

Fig. 15

MEr points of the feasible*ﬂgﬂ
P(]OO,]OO), Q(50,150),
3 the mip_

R (250, 50).
alue at (ha point p
'\‘l = ]00, .\'2 =]

(100, 100). Thus &
00, min, 7 — Rs. 60,000
5‘(‘:‘“‘“9 (Prodyeq Mix, Problem
a spe P :
l'nqrc'd?eflcf B e brick Is 5 kg and 1 contains i TgE
ke, Strenggp con B2+B; oty Rs. 5 per kg and B, costs R3¢
fium i onsrdcmuons State that 1 brick contains ﬂdwf;
!h('hmd‘u (-1 s L fine mfninm,;; of2 kg of B, . Since the ‘i"'.""?ﬂ‘? :
Rmphll‘(l;l 'L:p::'p:"”v ‘0 be relq edio he price of the brick, fms®
o 1) . . .
vumh’limm e St of the brick satisfying th
Solutio
R The L i
iLniflU‘t'l\llldlmn of the Siven problemis:
Subjec Nize (toty) co = &
blect “ONstrajpy . M2 = sy i
S £
bathx » Nd x 3y, =5
Whe X ;
kg;r ls-\‘?): ‘hean!]gu 0’ }’ 2 -0. ; ; ,‘.‘n&
ns‘f\ Spectwely_ The ngrediengg B, (in kg) and,
; (S) OWn iy the ﬁoure i ONsirajngg are plotted on eifrti !
o Comey o - lRure, 19y be ghgary, that feasible reg®
f Pointg p - ooerved that feas
1nd o Piqs 2,4 23,: 2 11;1(] Q4, 2), The minimum "ﬂxﬂ'
el B

Ay = Hence (he optimum
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\/ANAGEMENT APPLICATION

rgampie A local travel agent is planning a charter trip to
ij”" seu resort The eight-day seven-night package includes
, - round-1rip travel, surface transportation, board and

e fare Jfoi ‘ :
lhJ | selected four oplions. The charter trip is restricted to

i 1
tlﬂ’"ii";glu- and past experience indicates that there will not be
problett for genling 200 persons. The problem for the travel
"' lo determine the number of Deluxe, Standard, and
jour packages 10 offer for this charter. These three plans

chdiffer according 10 seating and service for the flight, quality

el |

-~ raccomodation, meal plans and tour options. The following table

Tour plan Price (Rs.] . |Hotel costs (Rs-) LD

] : : expenses (Rs.)

"f Deluve 10,000 3,000 4,750

: Standard 7,000 2,200 2,500
Economy 6.500 1,900 2,200

gmarizes the estimated prices for the three packages and the
rrespondinng expenses for the travel agent. The travel agent has
ired an air craft for the flat fee of Rs. 2.00,000 for the entire trip.

Price and costs for four packages per person

In planning the trip, the following considerations mitst be
key into account :
(i) Atleast 10 per cent of the packages must be of the deluxe
fype.

(i) Atleast 35 per cent but not more than 70 per cent mus! be

_ ofthe siandard type.

ffflJ 'Al least 30 per cent must be of the economy IVpe:

(iv) The n.m.timum number of deluxe packages available in

“.) any air craft is restricted to 60.

The hotel desires that at least 120 of the (ourists should be

The ;’rf; :F;’ deluxe a{ld standard paf‘kages together.

et in eqch ?fem wishes to d_f’le-nnme the number of packages

W) P pe so as to maximize the total praﬁl:

) Rorp ate the above as a linear programming pr f’bl" m.
y hme ‘;he.a.bovc linear programming problem i ferms
o ecision van_ables. taking advantage of the fact

packages will be sold.

e Ul
p ’ ] erd,
(c) Find the optimumn solution using & p

: ro
the restated linear progrummlrlg r

sour results. . ;
¥ luxe, granda

Solution Letx;,x;3.¥3 be the number of De ly 10

Economy tour packages restricted 10 200 pe

maximize the profits of the concern:
i on) arising out of cachtype ©

The contribution (per pers
ackage offered 15 s follows :

Pri Hotel Costs Meals, Net prefit (Rs-)

. ce
%:;':;gf | @®s)  (Rs) etc. (Rs:!
offered ) o 12) (3) @4 =1- (2)+ 3N
' ' 2250

Deluxe 10,000 3,000 4,750
2,300

Standard 7,000 2,200 2,500
2,400

Economy 6,500 1,900 2,200
fee of Rs. 2,00,000 for

Since the travel agent has (0 pay_lhc flat
the chartered aircraft for the entire trip, the profi
+2400x3) —

rsons on

f tour

t function willbe:
Rs. 2,00,000.

Max. P = Rs.(2250x; + 2300x, '
The constraints according (0 the given conditions ()10 (v)are

as follows :
x, 220from(i) * X3 > 60from (ifi) %1 T2 + x4 =200,

x, 2 70from (ii) X, <60 from (iv) X2 <140 from (ii)
X+ X, >120from(v) and xj, X2, X3 20

In compact form, above constraints can

following forms :

20< x, £60, 70=x; <140, x4

X Xy X3 = 200and x,, X2, X3 2 0.

(a) The linear programming formation is as given above.

(b) Since  x; +X; A3 =200, i.e. x5 =200 — (x| +Xx3)
substitute the value of x5 inthe above relations to get the
following reduced LPP:

Max P = —150x; —100x; + 2.80,000 subjectto
20<x, £60,70<x, < 140,120 < x, +x, <140
and X1, X, 20
(¢) Graphical Solution. Refer to the following figure forthe
restated LP. problem as in (b).
From above figure, we compute

h X, 4;x,=20 L X, =60 s

be reduced 10 the

Z60,xl + X2 2120,

130
120

110 \
100 E
90 (20, 1)0)
80 C (60,80

" = N !

60 f (50,70) >%=70
50
ot
W}
0}
10

D(20,120)

1 11 )
(0]
10 20 :
30 40 S0 60 70 80 90 100 110 120 130 HoﬁbmI

Fig. 17.
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e
Coordingies of | Values of objective function :
| Cometpoints | P < 1505, - 100y, 4 280000
"TUT»* P, = Rs 2,65,500
{60. 79 Py=Rs 2 6400
160, §0) P = Rs 2,63,000
20,120 Py =Rs.2,65.000
(20,100, Py =R 267,000
Thuy Mmaximym,

: Profitis attained at the comer point (20, 100)

is am :“”T’ retation of Solution, Maximum profit of Rs. 2,67,000

* dllameqd \\llcnl) =20, 1, = ]()();md_x3 _._200_(11 .”.?):80.

o !Jn ?;hﬂ Words, the trgye] agent should offer 20 delux, 100

<andar, ad g econ ) : ma_ximum
Profit of R 5 67,(()0()?}"0 tour packages so as to get the

ljla_mple Y5 (Product pix Problem) Semicond is an
Clectronicy Compan

‘ Y manufacturing tape recorders and radios. s
per unit labour cqgps raw material costs and selling prices are
o f eninTable ). pn €xtract from its balance sheet on 31.3.1994 is

:,':':'nn U Table 2. 1y current asset/current liability ratio (called
Ihe curren ratio) s 2.

Tahle 1: Cost Information
\

|
For Products | Selling Price L abour Cost Raw Material Cost
T pa—— R0 g
¥adio | Reow Rs 350 Rs 400
Table 2 : Frtrory Jrom Balance Sheet s on 31.3.1994
't
Current Lishilties (Rs.) Current Assets (Rs.)
oy e e S
Cash 1.00.000
* Accounts Recedy able 30,000
** Ioventory 20,000
Short-Term Bank Bomrowing 1.00.000

* Accournts receiyoble is amount due from customers,

" 100 untts of raw material used for

Lape recorder and 100 units of raw
material uzed for radis,

Semicond must determine how many tape recorders and radios
should be produced during April 94. Demand is large enough fo
ensure that all yoods produced will be sold. All sales are on crediy
and payment fur yoods sold in April Y4 will no be received until
S1.5.94. During April 94, it will collect Rs. 20,000 in accounts
receivable and it must payoff Rs. 10,000 uf the oltstanding shory
term bank borrowing and a monthly rens of Rs. 10,000, On
30494, it will receive u shipment of material wory,
Fs. 20,000, which will be paid on May 31, 1994 The managemen
has decided that the cash balance on April 30, 1994 st be gf
least 40000, Also, its banker requires thar the current rayjg ason
April 30, 94 be at least 2. In order to manmize l}u'wmuburimx 1o
r,;r,f.'x ! for April 94 production it has to find the ;i.rrfgltd(‘l mix for
';‘,,,',/ §4 Assume that labour costs (wages) arg Ruuf in the mgmh
i which they are inc urred.} f o!;m::!;z!r ',rhn s a linegr
e . v il ol
pmﬁmmmxl}”};jh,ﬂ and graphically solve i

Solution Fermatation. Let x; and x, denote the numbe of
u ’ 7
= {h of tape recorders and radios respectively (o be produced
4 ;
 garing Apal 1994,

Ak

func

or
or
or

i T ance, aCCOums ; “'
receivable, inventory and current liabilities as o April 30, |

orunit of tape recorder
fis p;r;:lhng priCC-(Labour Cost + o -
=Rs.1000 - (Rs.500 + Rs, 300) < Rslgaten,'alc |
imilarly,profit per unit of radio ) Ty
=Rs. 900 - (Rs. 3.50.+ R.s. 400) < Rs .
wishes (0 maximize i(s rofi, ]
ngﬂza%" P=200x 1 #1501, subjectlu? ee()repbje
(1) As per data given in the balanceg o o
available in the stock can be ugeq only g 2 i
units of tape recorder and 100 units of i prﬁlIQ N

x, $100and x; S:}OO.d o 0, el‘:fé?}
management has decided {hy th t
@ 33;);] 30, ]g994 must be at leas( Ry, 40,(;10?):,lsh ba];uIQeQ &
Cashbalance = Cashin hand on March31,94 ]
+ Accoun(s receivable Collecteq i
~Bank borrowing paidog ;, Apri? Ap .
~Monthly rent paid - Labour cos( p O

id dyy; ‘
= Re100000+ R 20000 Rs. 10,00 " Apiy,
- Rs.10,000 - (500x, 435
Management wants cash balance > Rs, 40,09~ 2

Rs.1,00,000 - 500x, - 350x, > 40,000

Rs.60,000 2 500 x, + 350 X
300x; +350.x, <Rs.60,000, .
(3) Bankers require current ratio as on (April 30, Logy ;-(21:‘1
Current ratio= Current assets/Curreny liabilities_ 3

Now we have fo find the value of cash by o

{

1994

Cahblance= 5100000 - 00 x, - 350 5, Aoy |

Accountsreceivables as on April 30, 1994
= Accounts receivable on March 31,1994
+Accounts receivable due from April sale
- Accounts receivable collected during Api] §
=Rs.30,000 + (1000 x, + 900 X3) = Rs. 20,000
=Rs.10,000 +1000 x, + 900 X, ;
Inventory on April 30, 1994
=Inventory as on March 31,1994 : 1
+ Inventory received during April, 1%
= Inventory consumed during April, 1%
=Rs.70,000 + Rs. 20,000 - (300x, +400x;)
=Rs.90,000 - (300 X1 +400x,).
Cumrentasses as op April 30, 1994
=Cash balance + Accounts receivables :
Inventory value on AP“”
=Rs. 100,000~ 500 x, - 350 i
I +Rs. 10,600 +1000x; ’ﬁ’ t':’. 1
+Rs.90,000 - 3001 ~ %7
=Rs.200000+ 200z, +1501, .
Curreny liabilities as on April 30, 1994 ‘
= Value of bank borrowings as on March, 94 19
~ Loan paid duri.l'lg April'jw
+ Amount due op inventory received during A &ww
=RS.100.000~ Rs. 10,000 + Rs. 20,000= Rs- b=

019




RAMM',,}g PROBLEM

fequires that current ratio ay o,

:\[\nl 30, 1994 e at
; ! Jp assets/eurrent liabilities e 2
a7 i~ RS 2,00,0004 200 v, 4 150 x, "
Rs. 1.10,000 =
00,000 + 200 %) +150 x, > Ry, 2,20,000
YT 2008, +150 %, 2 R, 20,000, : (iii
e linear programming model for (e Scmicnnd”is“:::

4

47

3 ’.:!J\\‘ "“i[C ll = '700 ,‘| + ISO X 2. Sllhjcc‘ o th &
M 100, x5 £100,500 x) + 350 x,

200 xp +150x2 = 20000and v, > g,

onstraints :
< 60000,

Xy 20,
. 5] Solution The feasible re

. y Tegion enclosed by (he
Gf”’:l::_. s given by points A, B, C, D with theijr coordinatesy;
g
i N
A
(0 r"“
X, =100
,‘vu;f‘.i’\
(25,100)
L \A_\B(50.100)
100 .
‘Jo J\Oo X1-|00
=
5 N
60t N %
% t
N N
Elilg 2 v
2, |9, .
: ARSI
20 &00,200/7)
1 1 1 L D Lx
0 20 40 60 80 (100,0)120 TR
Fig. 18

AI15,100), B(50,100), C(100, -2—:-9), D(100,0).

§ Teprofit at these coordinates is found as below :

R
A5 100) Ry 200 » 25 + Rs 150 ¢ 100 = Rs. 20,000
BS0.100): Rs. 200 « 50 + Rs. 150 100 = Rs. 25,000 o

CA00, 200/ 7) - Ry, 200 % 100 + Rs. 150 x 200/ 7 = Rs, 24282°

D{00. 0y Rs. 200 100 + Rs. 150 % 0 = Rs. 20,000. o
Since maximum profit is attained at the point B(S(_)' ld i

Semicond can maximize its profit by producing 50 tap recordets

nn.d 100 radios during April, 1994 and the total profit contribution
will be Rs. 25,000,

Tr—

—————

ive
Q. Explain - (i) No feasible solution, (i) Unbounded solution o
one example in each case

—

4. Important Geometric Properties of LP Problems
Geometric properties of LP problems, observed while

solving them graphically, are summarized as below :

I. The region of feasible solutions has an important PTOP_cny

which is called the convexity properry in geomeltry. provided

the feasible solution of the problem exists.

Convexity means that regfon of feasible solutions has no

holes in them, that is, they are solids, and they have no cuts

(like AAMAAAAAY) on the boundary. This fact can be

expressed more precisely by saying that the line joining any

two points in the region also lies in the region.

The boundaries of the regions are lines or planes.

There are comers or extreme points on the boundary. and

there are edges joining various corners.

The objective function can be represented by a line or a plane

for any fixed value of z.

At least one comner of the region of feasible solutions will be

an optimal solution whenever the maximum or minimum

value of zis finite.

If the optimal solution is not unique, there are points other

than corners that are optimal but in any case at least one

comner is optimal.

The different situation is found when the objective function

can be made arbitrarily large. Of course, no corner is optimal
in that case.

4 ' Examination PROBLEMS

1. Solve the following LP problems by graphical method :

3 Min 2 = 6x, - 2x, ;5. 2%, + 3x, 2 1, %, %, 2 0.
MHint. Vertices of the feasible region are - (; ,0).(0, %)1
(Ans. x,=0,x, = 1/3, min.z =-2/3]

) Max 7 = 5y, 4 3x, s L 3xy + 5xy <15,5x 4 2xp < 10
Yy Xy 20 [IAS (main) 2011)
Hint. Vertices of the feasible regionare ' (0, 0). (2, 0),
(200719, 45/19) and (0, 3) |
ANs.x, = 20719 x, = 45719, max z = 235/19)

o Max ; - 2, + 3y sl x4 Xy 8 1,304 0 $4ix.x20
Mint. Vertices of the feasible region are |
0100, 1)

1 i‘:m Y120, %, = 1, max. z = 3)
) '311:511 i 7’2 o Lokt x21ﬂ4,3X|+ Bx, <24,

1
U4 7r, 535,x, 2, 20

I [NTU (IV B. Tech.) | Sem. 2008; Meerut S0]

"
"™ Vertices of the feasible region are

(0,0),(7/2‘0)_(713,5!3).(8!5.12!5)and(0.3)]
[Ans.x, =8/5,x; = 12/5 max. z = 124/ §

(e) Min l.=-X|+2X2‘,.\.l.-X1+3X::10,X‘+X2£6,
Xy =X £2,%,%;20
[Hint. Vertices of the feasible region are -
(0.0)(2,0),(4,2), (2. 4)and (0, 10/ 3) )
[Ans. x;=2.x; =0 . min. z = - 2)

(h Min.z =20x, + 10x; ;5.1 xq + 2x, < 40, 3x, + x; 2 30,
4xg + x; 260, andx, >0 x, >0
[JNTU (IV B. Tech, ME etc.) | Sem.,
[Hint. Vertces of the feasible reg:u:m are Y A =
(15.0) (40, 0). (4, 18) and (6, 12) |
[Ans.x; =6 x;, =12 min 2 = 240
(g) Maximize z = 3x, + 4x, subject to -

Q=8 S -1~\,6\:\_.‘(\‘.\‘,',

[JNTU (IV B. Tech. Mech,) | Se

20
m. 2011;
[Ans. The problem has no solution ] Bhub. (IM) 2004)




€ solution (extreme point) to

- LTS €ol'z, atleast as Iy eas the i
Until an optimaj solution js reached g preceding one)

method are developed for solving

X z =cx, subject to Ax = b, X >0 where A is 2
matrix. For convemence, we shhall take maximization problem

. most widely used
simplex method s adopted which wag developed by G, Dantzig in
1

The simplex method provides an algorithm (2 ryle /, of
procedure usually involvin g repetitive application of 3 prescribed
operation) which is based on the Jundamental theoren of linear

programming.,

It is clear from Fig. 4 (page LPP/17) that feas‘ible solutions
may be infinite in number (because there are infinite .n.umbe; of
points in the feasible region, 0ABC"D). So, it is rather Impossible
to search for the optimum solution amongst all' the feas_lble
solutions. But fortunately, the number of bqsnc feasible soluupns

ite in number (which are corresponding to extreme pointg
atp e S D, respectively). Even then, a great [apoy is
0, A : B: Cf, di;ig all the basic feasible solutions and 1o select that
requm;d ;]n ”:iml-zes the objective function. . '
one whic 0P ethod provides a systematic algorithm which
The stmP {ﬁﬁ gn}rom one basic feasible solution (one vertex) (o
consists of mo

Applications of Simplex Method

; - nner so that the value of the objectiy
anoth.er g Ilr’]riic\izeqf?lg procedure of jumping from vertex t,
function ]Sel egﬁed If the objective function is improve 5 each
.Veﬂextl]fer: rf)o basi.s can ever repeat and there is no need to 20 back
{gn\:gtex already covered. Since the number' of ver.tices is finite,
the process must lead to the optimq] vertex in a finite numbef of
steps. The procedure is explained in detail through a Numerjcy]
example (see Example 1, on page SMX/17).

The simplex algorithm is an” iterative (ie. step-by-step)
procedure for solving LP problems. It consists of —

(i) having  a  tria]
constraint-equations,
(ii) testing whether it is an optimal solution, or not
(ilf) improving the firgt {riz] solution by a set of rules, and
Tepeating the process till an optimal solution is obtained,

The Computfltion.a] Procedure requireg gt most m [equal to the
number of equations i (2),] non-zero variables in the solution at

basic  feasible

solution ¢

Further, itis Very intere,

L stincto : ion at
Y teraion is rejg 0 tha 1. L0Ote that a feasible solution

Iteration i (he followin o s ot thq SUCC?SSM
(Which gre ZEI0 NOW) gt gpe - Y. Qne f the non-basic variables
(he folloing 1 3 © lteration becomeg basic (non-zero) at
compensate, ope of the. and is called ap entering variable. To
2t one tertior asic vanabl_es (Which are non-zero HQW)
Hleration, ang 1 calledq:;S 1on-basic (zero) at the following
Variableg remyj " Parting variable. The other non-basic
rem

Ain non.zgy, (thou,gh i e (;ther basic variables, in general,
CIr vaJyeg may ch
ange).



gMPLEX METHOD : THEORY AND Appicptq
NS

T

For convenience, We re-state the Lp propo;. SMX/15
Max oo . - Tinstandard form ; R————
. s = - .
subject to the constraints : CIX + Xy +.. 4
nx + Ox + 0
a . n+1 Xn+2 +...+0xn+m (1)
11x1+a12x2 +...+a b ot &
a21x1 +a22x + Inn 'xn+l :bl
2 T+ a,,.x
i e TXn4 =b2 2
a1 x; + e ..(2)
mAl T AdysXs +....+q X
and *1 2O’x2 >0, x. 20 e +xﬂ+m =bm
1 _ 3 seeny 20, x >
i i obvious starting nbasic "f;,l __bO, v dnem 20 -.(3)
X =%2 =X3=...T X, —O;Jc,1+1 = b, Xpq =b y asi l_e solunon‘ of m equations (2) is usually taken as
Here %1+ ¥2 1 %35 412 (each equal to zero) are ngl’l';(;sig;m . bblm . For this solution, the value of the objective function (1) is zero.
: a ariable. s e i .
yariables (some of them may also have the value zero) * #nd remaining Variablo (e 1 » X2 (%3 1oooe s m) are basic
SUMMARY OF DEFINITIONS AND NOTATIONS
The first basic feasible solution is : x; =x, =y, =
reformulated LP problem : Max z = 15% =X3=...=x,=0; and x,,, =bh, xﬂ+2:b2’xn+3=b3""xn+m=bm for the

. CX, subjecttoAX =band X > 0
First denote the jth column of m X (1 + m) matrix Abya; (j - 1 '2 3,..., n*+m),sothat
] 3 y y eeey ‘

Now form an m X m non-singular . A=_[a1 782 sy Apyp ] (1)
] gular matrix B, called basis matrix, whose column vectors are m linearly independent columns selected
from matrix A and renamed as 8, , 8, ,B5 ..., B,, . Therefore
B=[B;,Bz,.... Bn1=Ia a oyag ] 22
For initial basic feasible solution, " it & i 2002 G
B =[(1,0,0,...,0),(0,1,0,0...,0),...,(0,0,..., D=1, (identity matrix).
The matrix B is evidently a basis matrix because column vectors in B form a basis set of m-dimensional Euclidean space (E™)..
Second, denote the basic variables X, 41 » X2 s+++> Xp4m DY X1 s XB2 »+++» X¥Bm respectively, to give the basic feasible solution in
the form : . :
Xp =(xp1>Xp2 > XB3 »eres Xpm) = (Xni1 X425 Xn+3 0000 Xn+m) -(3)
For initial basic feasible solution, :
Xp=(b,by, by,....by)= right side constants of (2).
Next, the coefficients of basic variables Xg; s X2 »+++» *Bm in the objective function z will be denoted by cgy > Cpy »++s CBm »

respectively, so that
CB - (CB] sCpo s--0» CBm)-

For initial basic feasible solution,
P cp=00,0,..., 0) = 0 (null vector)

Consequently, the objective function

Z =C1_x1 + szz +C3X3 +...+ C"xn +0xn+] +0x,,+2 +...+ 0xn+m becomes

+...+ CBmXBm [sincex; =x, =X3 =...=x, =0]
=¢.0+c¢ 0+...+¢,0+cpi¥p1 Bm
o z=¢ .0+ n 71=Cp X5 - )
initi ion, therefore
= ctor for initial solution, ‘
Because C 5 = O (null ve ) " 20,%Xp=h.

vectorin E™ canbe expressed as alinear combination of vectors in B (by definition
(j=12.nnt ) of matrix A can be expressed as a linear combination of vectors
pination is given by

gular basis matrix, any
jcular, each vector a fn

inear co
on for such 1 N

ﬁZ +...+xmj Bm =(Bl ’Bl PRREE} Bm) : :ij ‘ .(5)

X

Since Bis anm % m non-sin
of basis for vector space). In part

Bi(i=1,2,..,m)in B. The notati

mj

=Xy + X9j
aj "‘x]j ﬁl 2./

: :ed tO express each a; (j=1,23,...,n +m) as linear combination of basis vectors
; require )

where x; (i=1,2,3,..,m) are scalars 1ed

Bl ’BZ ’B3 yenes 6"1 .

erefore, X; = B 'a j and hence

ix (X;) will change if the columns of (A) forming (B) change.
matrix (& .

For initial solution, a; = I.,X; = Xj-

1 S m
Next define a new variable, $3Y Zj » 2 iy R
z —xr CB] +x21 ch +...+xmjcBm - ,'El cleU Cij . --»(6)
y =Y '




~ THEORY

e A7)

la:
= e formt (-G
et evaluation which is computed bAym: .-G = C B_) o :abl B

Ai denotes the n

le S
4 s ing simp
Lastly these notaj L followIng start . -
» otations can be summerized in the fo ping S
o "’ Table1: Starting Simp s
B
e B
BASIC
VARIABLES (6} TR
e —ay,) . .
Tnsp(=s) cp1 (=0) Xgy (=by) Xy (=ay) "12(’”12) | xu(=azn) ‘ : |
'tn+2(= 52) CB (=0) =b X (:g ’) Xﬂ(=a22 . : : : | e
) 2. Xpa(=by) | 2u(=d2 ) : (= ) 0 : e
. = mn -———J‘——g“
. X
L“L'(:SL) Cgm (=0) Xpn (= b,,) Xy (5 0p1) j
— - - atrix in the table.

the unit m
;s : umns forming
NOTE - Basic variables in the first column are always sequenced In the order of col

. mple.
ine numerical €xa
Above definitions and notations can be clearly understood by the following

i ing problem O3
Example : Zllustraze definitions and notations by the linear programrmnf i Dt 20t 3xy = Xs
Maximize z = x, + 2xy +3x5 + Ox, + Oxs, subject 10 4x, +2xy +X3 TX4 =

~Solution First of all, constraint equations in matrix form may be written as
: X
A X

b
a; a, a3 Ay a; X9 4
471197 1247 9] | 1 =[ p

233000 -1 || %

- or ‘ g AX =h.
A basis matrix B = (B, B, ) is formed using columns a ; and a |, so that

B,.=as=(13)'32=“1.=(f)'

The rank of matrix Ais 2, and hence a 5, a,; column vectors are linearly independent, and thus forms a basis for R2 :

az a .
Thus, basis matrix is B=(B],B2)=G, ‘1‘)

Using (4) on p. SMX/1, the basic feasible solution is :
-1 I -1 1+~
Xg=B" b=| —adjB) [b =__ 41147 1

: =| 28711 _[ xp
g .- ds { 4/11]'[x32]'
Therefore, basic variables are xp; =28/11=x,, Xp =4/11= X,

and remajn; 5
i.e.x, =x4 =x5=0. Also, , AINIng variables aye
. cpy = coefficient of x -

| = coeff, of X3=¢y=3 :
Cp =‘coefﬁci¢nt of xp, = coeff, of x,
- c;=(3D

Now, using (5) on p. SMX/2, the value of the objective function g
=0y, =(3,1)( 22;11)588
I
Also, any vector a; =(j=1,2,3,4;5) can be ex

linear combination of 3, B,,we have ‘
Ay =xpp B] +x

non- i :
’on basic (which are always zero),

=c =1,

pressed as linggy Combingy;

=y ’ 2) Th
To compute values of scalars x;, and x, , use the resy]¢ 3) on% Slvf)l(Z/ A3 F&,, | erefore, 1o express a, as
x2=n“a2=__( 1 ~4) ;toget -
11{-3 ( = 6/
1 2) (4/1111)=(3C12
2

AND APPLICATIONS
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a ﬁereforem=6/11’xzz =4/11. L TR RTINS

. tment can be adopted for .
ilar tred EXpressing other g .« -« 1:
o using ()91 Page SMXP2, the varigpj - oo 21”25 linear combinaiion ag, ana
1 2 .

nding to vector
= 4, canb i
2y =Cpx, =(3,1)(6/11] 2 Can be obtained as

1 =(3X£+1xi)_22.

milarly, 21 23 Z4» 25 €an also be computed, ‘ i

| pUTATIONAL PROCEDURE OF SIMPLEX mETHoD
fie omputational aspect of simplex method can be easily underst

j j 00d by the following sin
Esample 1 Consider the linear programming problem Maxi, ing stmplo example.

Mzez=3x| +2x, subjectto the constraints :

X tx, <4,x, - :
11X <4,x Xy <2 and x; ,x, 20.

golution Step 1. }_Tirst_’ observe Whether all the right side con VINTU (MBA) Il Sern. 2010; LS (Maths.) 2007 (Typs), 2004; Kanpur 2000]
tive value on multiplying both sides of the constraints by ~ |,
step 2. Next convert the inequality constraints to equati
efficients of slack or surplus variables are always taken zero i
¢ only slack variables s, and s, are needed. Therefore, given

| Maximize

stants of the constraints are non-negative. If not, it can be changed into
In this example, all the b," 5 (right side constants) are already positive.

ons by introducing the non-negative slack or surplus variables. The

n the objective function. In this example, all inequality constraints being
problem now becomes :

2=3x; +2x; +0s5; +0s, subject to the constraints :
X + .X'z + 5y =4

xl—xz + S2=2

Xy »y X2g » 51, 8 20.
Step 3. Now, present the constraint equations in matrix form

111 0] % |_[4]
1 -1 0 1ff s | |2
Step4. Construct the starting simplex table using the notations already explained on page SMX/16 (Table I)

It should be remembered that the values of non-basic variables are always zero at each iteration. So x; = x, =0 here. C__olumn Xp
. givesthe values of basic variables as indicated in the first column. So s; = 4and 5, = 2here. The complete starting basic feasible solution
| nbeimmediately read from Table 1 as: s; = 4, s, =2,x =0,x;, =0,and the value of the objective function is zero.

I

| |NOTE 1n this step, the variables s, and s, are corresponding to the columns of basis matrix (identity matrix), so will be called basic variables. Otheu\
y 1 2 F : 3 ‘ .
{ variables, x, and x,, are non-basic variables which always have the value zero

Table 1 : Starting Simplex Table

> 3 2 0 ) : : :
B ! : : MINIMUM RATIO
BASIC : ¢ X X5 (Sy) X4 (52) . : Xp/ X, for Xy >0
VARIABLEg |  Cs X3 X, - A2 [i%) (82)
\-‘ /
BASIS MATRIX
5 0 4 1 1 - : TO BE COMPUTED IN THE NEXT STEP.
5 0 2 1 -1 :
[F o —Adj=z;-¢;=CgX; —¢;
C A 3 a,=-2 857 0. N
2=CgXy 1=- - . . -,
F e ble solution for optimality by the rules given below. This is done by computing the ‘net
tep e so

e 5. Now, proceed to test the basic feasl
gty

n' A f (column vector X; ) by the form ula: & =% =G = €s% —g Lrom® onpt?ge 5 i
j foreach variable x; (O '

1S we get e Ay=CpX3—C3 . A, =0.
A =cpx, — ¢ A2=C5x()2)(1 ) =(0,0,0-0
=(0’0)(1,1)_3 =(0, 1_‘('))(1)_2 ‘=(OXI+OX0)"0
=0x1+0x1)-3 =(0% =0

==3 =-2




\ .
1 SM

W e —
REMARK

It shoulq be ng
2ero, So there

as (-
's are same
ted that in the starting simplex table A;'s

S o need to calculate them.

s will exist if any non-basic A, ig

Optimality Test

also zerg,

1 al’
: t opt1m:
. test1S NO
(ii) If at least one A ; is negative, the solution under

nX;
of the colum
(iii) If corresponding to any negative A j» all elements

unbounded,

) ible sO
. ing basic feast
Applying these rules for testing the optimality of starting
€nce, we have o

Lo 6.
p is solution in Step cen
proceed to improve thl_s solut Jution, the vecto sally name ' eag i
Step 6. In order to improve this basic f(?aSlble]eS(s) Such vectors are Us st negative value of Aj (say, A)). Here
basis matrix are determined by the following rules. ine to the moO: is matrix. The columnx is
: nding the basis m 1
Tespectively, po must enter

.l solution
tive optimal 5
i
ternda

- 1 ‘ tstep.
7 [I.AI - u on mn the nex
under test Wlll be []pt"ﬂ I lmpr e [h(b bol [lt:» Sollltion Under (CS[ \\riu be
- lution dlo 0 h an
Zj Cj)ZO,thCSO ' rC.e r ) ( )y[ (
eo:ltl\/e 0
are n€s

2 l‘ are n -
1 a 1 ll zs b
]u 1011, Ot

o be removed fropy, ¢
ix and the vector t 1 ‘outgoing vecryy
the basis matrx ing vector  anc £0g vector
. e “ancoml ;
tering d as ‘mc '

. ected corres ’
‘Incoming vector’, Tpe incoming vector X, is always sel d hence column vector X ;
Ay =min[A, A I=min[-3, - 2] =—-3=A, .Therefore, k =1an
k= 1> 82 1= N o
marked by an upward arroy M.
‘Outgoing vector’. Th

i \' i ecte
POSitl‘ve e]ements 01

tical form, this rule can
; In mathema
i atio Rule.
: finimum R
. Thi s called the A
ined i i ctor X ;. Thisrule i
predetermined incoming ve
be written ag e
l Tp_min| Sy 5
Xrk l Fik
Fork =1,

X 4 2 r xBf = _2_ = .xB_z .
- X s o L
5 i ﬂ,'m]:mn[l’l X 1 xy
X Yo Xy

Comparing both sides of this equation, w

: should be removeq
e getr=2.50 the vectorf,, i.e., X, markcl:)d 1wnh downward arrow ()
o : iven below.
from the basis matrix. The Starting Simplex Table 1 is now modified to Table 2 asgi
: : Table 2
key element
Cj—b 3 2 V 0 ﬁ
EASIC ‘| Cg Xp "X, X, X3(S)) X8y MIN. RATIO Ay
VARIABLES G B Xe/Xy), X, >0
5 0 4 1 1 1 0 4/1
$ 0 2 B el EES 1
]
=3 -2 0
FTCXp=0 | A)
entering vector
0], . ;
i = lace of INCOming vectq X, =|1
Step 7. In order to bring 3, [ 1 }lnp g rX, =  wunit
’ . e 1 ¥ must OCCUQy In the markeq ‘I’ position and zeroat
all other places of X, .If lhelnumber'n} the marl_(ed O POSItion is othey than B, divig, I ,
(The element at the intersection of minimum Tato arrow (<) gug incoming Ve rarrow(e) L elemeny of that row by the ¢ key element’
' i ipli i . i
s e e o e o Stoapg K cement o e s
X . Thus, the process c o nsformatioy X Zeros ; . . .
co]urrlr}hne i;ltermediate coefficient matrix is ; 3 folloyy . | 108 In the Iemaining positions of th
Xg X xl Xz '
4 1 X,
R, 1 : X,
2 1 1 .
Ry 3 - =1 .
R, 7 z=0 = ‘ - ' - l
—_ R R "—)R3 + 3R2 to Obtain 0
IlyR, >R — Ry , R,
Apply K, ) - "




. X .
Y. Minimum Rano[ X—B o X, 0) = Mm[

0D : THEORY AND APLIC 7 o

MPLEX . : e 3 T dcrs e ~ TN ‘ sMﬁ)flj:?”_-,_,..z
SI h‘g xl
1 2 0 X, X, X4
2 1 2 X )
— 1 & Y
0 ,
1 3 =5 0 3 «— Aj
Now construct the Improved simplex tabe 4 follows .
c; > 3 2 0 Tﬂb]e 3
0
X : —
SIC c Xp 1 X4(8))
%;I\ABLES 7 B2) Xa By Xels MINIMUM -RATIO
VA \ (XBIXZ,XZ>0)
0 2 0 o :
) . e - Z « key row
! 2 r ted)
(negative ratio is not counte
e v RS
: 1 ¥ 3 «A;
—ltrs L e T
= key column

From his table, thf: tmproved basic feasible solution i read a ‘X1 =2,x,=0,s =2, 5, =0.The improved value of z =6.
Itis of particular lﬂlCICSt.to note here that A j 8 are also computed while transforming the table by matrix method. However, the
comectness of A ;' s can be verified by computing them independently by using the formula A ; =C5X; —c; .
Step 8. Now repeat Steps 5 through7 as and when needed until an optimum solution is o&aiﬁed il:‘l Tabjle 4.
_ Ay = most negativeA; =-5=4A, .
Therefore, k = 2and hence X, should be the entering vector (key column). By minimum ratio rule :

5 »—| (since negative ratio is not counted, so the second ratio is not considered)
2

Since first ratio is minimum, remove the first vector B, from the basis matrix. Hence the key element is 2.
Dividing the first row by key element 2, the intermediate coefficient matrix is obtained as :

XB XI X2 X1 X4
r l ; y 1/2 ~1/2
R, 2 -1 =S
5 228 i = 0 3 —A;
AmplyingR) - R, + R, , R, & R; +5R,
! ) 1 172 -1/2
3 1 ‘ 0 112 15
| z=11 0 0 52 o o
Now construct the next improved simplex table as follows :
e Final Simplex Table 4
c;— 3 2 0 0
“IBASIC R | Bigi s B Y X, %00 s, g
VARIABLES - . ;
: 1 0 ) 1 ' 1/2 , _1/2
5 3 0 542 1/2 '
g . chu;xn_ill———” - (__Aj . »

. L w =0, and max. z =11 Also, using th =C.
Vﬁdf}"he *olution 5 read from this table is : x; =3, %2 = P, i i(s)’ ” FlicTomul ;s e BXj —c;
thatay o s are ive. Hence the optimum solutlof
j non-negative. — z=11.
X =3,% =1, max :

E If 3
Tab|

"~ the total profit will be reduced from 11 (the optimal value) to 5/2 t o
t = — - 5 i the solution, the k a s ; Imes of 2 units of s. ;
;f:‘e loftlzma: :tagel, 1; is geSIﬁrei ;lc; ggng isr:sighte economic interpretation of net-evaluations A; s, in
' LE, 2= i X2=6.
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F R

T|0Ns
LEx MET HOD ¢

: { COMPUTATION 5 ine si .

dlfferem computaﬁoml steps can be more conveniently represented by the following single table -

Simplex Table
\YJ

MIN RATIO
(Xp / Xg)

4/1 \

2 /1 & Minimum

/2
1=, = 2=CpX, =11 ho\
\Kﬁ

g 0 512 | AllA; >0 |
_ ‘Thus, the Optimal sojjjtjep is obtained g : , |
Q. 1, :
2,
£ : Simplex method for the solution of Maximizatio | p.p
Tips for Quick Solution ;

1. 1In the first iteration only, since A;’sar

Cj S,
Matk min (A, ) by 1

3. ‘Key element* is found at the place where h

(X g /Xy ) intersect each other in the simple
4. ‘Key element* indicates that the current table mugt pe transformeq in such .
elements in that column become 0.

5, Since A J 's corresponding to unit colump vectors are a)y

€ UPWard directed arre,,, pL
X lable,

w
3y that the key element becomes 1 and all other
One

ays zero, s there js p

e of zang corresponding A
. ' j :
ique,

are alsq Computeq atthe sﬁme time. Thus, @
Exp,mplé 2 Minz= X =3x, + 2x4 subject to the constraings . o
f - 5 3/\:1 _xz + 3x3 < 7, —2x| +4x2 _<.12, -‘4x
inimization, Convertj
is is the problem of minimiza
Solution This Maxixize ==y

) edto¢
6. While transforming the table by row Operations, the ya,, enlate them,
i lot of time and labour can be saved in adopting this techy,

1+ Xy +8x
1 the objeciye fu

i 3x2 = 2x =

ive only tables of solution. The studens are advised ¢,
we give

Here we g

3210, gy
fction frop, mininfjlz‘ :‘_2 X320, [GBTU (MBA) 2011]
atj L
‘ 2 cre oy Onto maxmuzatlon, we have
O verify them,



p+ THEORY AND APPLICATIONS

P
o Simpl
‘ e T S 3 i
! BASIC \ Cp X \ -2 0 0
0
| VARIABLES - B X, X, X X
X4 4 1 i) - 4 X X ‘ |
—X5 0 2 o * 1 1 -
- 0 ~“'0 ———— Om--
6 4 8 3 g -] === 0-q-=-=-=-=""" 1274 -~min.
/;Q_—-——'j . — I 2 ? 0 0 ‘ :
=7 oyt e - *
- X 0 10 =12 1 0 0 S w \‘
| % 0 1 512 0 3 0 ‘;4 \
X, = X5 z'=9 3 —3/4 |
" I i G T \
«— X4 0 10 1 0 6/5 25 110 5 \
i .
-+ % 10§ 0 T Vs 310 \
., :— — 1 19 0__u |- |
i = = = 2
1 Theoptimalsolution is: x;, =4,x,=5,x3=0,Minz=-11

E‘,,mple:‘l Max. z=3x; +2%2 +3%3 subject to the constraints :

NN

x| +2x; +X3 <430,3x, +2xy $460,x, + 4x, S 420, and xy , X2+ X3 >0. [1AS (Main) 1994]
golution Simplex Table i
. I 3 2 a5 0 0 0 =
\ VAg?::;I:.‘ES Cs Xz X X X xf 7’/" X4 J T{R@T?p e
@ %4 0 430 1 2 ._‘ 1 0 0 A30/
3 «Xs 0 460 3 0 e il | mmm= Q=== 46012 =
‘3 X .0 420 1 4 0 0 0 \ —
[ =X =% z=0 -3 2 3 0 9 0 [
1 =3 0 200 | -12 ._[2_‘]----0-——---1---——1/4—-—0 """"" 2002+
| ) 5 230 n 1 1 o -2 0
!4' X6 0 420 1 0 0 0 0 1 4204
s | G 1150 92 —12‘ 0 0 52 -y 9 «D
iy o 100 |-14 1 0 I LR
%, o - 20 |37 0. :1 o 20
= _,9,._-__—-2—0—-—- 2 e ° = 12 :)
5= 5= 55 Z= 1350 4 o 0 ! AD; 20
=0

——

=100, x5 = 230,maxz= 1350.

Sinceall A ; 2 0,the solution is * X1 = 0,x2

' Bram ! = 3x, +9%2
ed blem :Max. 2 1
P Solve the LP pro 1+ 2x, + 453 <15, and Xy »%2 » %3 20.

+4x3 subject to the constraints :

5 2x, +3x, €8 202 +5x5 £10, 351 [INTU (MBA-I Sem.) 2011, 1AS (Math.) 2010]
. - - tions become p
Ylution After introducing slack variables, the constraint €444 o
2x1 + 3%, sl n =10
2x, + 5x3 +Xs 5
2 +Xe 15.

3x, +2x2 4x3
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SNPLEX METHOD : THEORY AND Appy - . !
" ~ g mPL
. = \ |
. ¢ Table
) ing Simplex
Table 1. Starting o 0 0 MIN. RATIO |
Ci— 3 5 4 X Xp/X3), X3>0 { |
%\&_ X X X @ B2 B { A
% Calee s X, et s e 83 « v
. KN L0 1 i 102
©xy T 15/2
Xg : 0 0 ! —————
e e 420 3 2 4 0 —4
X|=XZ=X3=0 :?X.:O\ -3 ,?* ) ? 0
\\‘ Incomin outgoing vector
. g veclor  outgoing e g
3. This key element Indicate : |
shoulq }, :tp fl‘i); Shortcu "ethod for minimum ratio rule (min X, / X, ), and find the key element y Sthat Unipy N
ow Place of 2 »Sothe vector 1 removed from the basis matrix is X ;. ' oegiiElians: [
Irst i~ (?rder 10 get the Second simpley table, calculate the intermedate coefficient matrices
St divige the firg; TOW by 3 to get
R, :
Ex
Sol
equ

e NN ]

513 H 0 3 3 5«
X=x=x,=0 -\z:E\ 13 0 P ! _ 212/4
Filiamee ot 8 S0 R Tos o 0

; \
) Incoming Ovtes 4
. tgoj

2 . ‘\gng

k-lmet'sfudtb. ‘ ’ e o
The key-ele nent is fo 111 Ob;:S Hence the vector "CMOVed from gy _ :
manner, the remaining simplex tabeg are obtained (T, 3and Typ), P ebamsmatnx isX,
\ . 5+ Nug proceeding Xactly in the same
BASIC VARIABLES Cg X,
.\\‘
X, 5 8/3 1 =
' . : MIN, RATIO
-, 4 14715 0 ; 0 s
: ~2/15 ¢ iy ol
15 - 33
A
—x 0 89/15 < ATS: .
X =X5=24 =0 2=256/15 gg/ﬂ(—rmn ]
15 15 ‘
\_/ i
<A, ‘1
\—_/
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ME S 3
3 ?ﬂlﬂ Tab] 7 X
: ey
| 1 e e | 4. Fina] Slmplex'rable
/ Cs Xp X, X, = :
g 3 X, X
V s 50/41 0 : )
; 15741 8741 ~10741
) 62 /41 0 A
4 .
‘ 9} \ ) 1 ~6/41 s1a1 alal
[ 89/ 41 om0
| : : “24 Sy 15741
| Rl
1 =765/ 41 0
]4 sl 7 0 ¢ 45/ 41 24141 11/41
[ 5=

6 H H i
| mi > 0, the solution givenby x; =89/41 %2 =30/41,x, =62/ 41, max 7 = 765/ 41 ,is optimal.
Sin
5 Minimize Z=X3 —3x3 +2x5 subject to the Constraints ;

le
joP 3x, — X3 +2x5

£7 =20, +4xy <12,-4x, +3x3 +8x5 <10,andx, , x5 ,%5 20. ) -
i i , the con
tion Equivalently, max z’ =— Xy +3x5 - 2x5 where 7' = — 7. Introducing x, , x4 and x4 as slack variables |

Iu . : !
2 :ons become «
1 x1+3x2—x3+0x4+2x5+0x6= 7
| Ox; = 2xy +4x3 + X, +0x5 +0xg =12

. Ox; —4x, +3x3 +0x4 +8x5 + x4 =10.

ceeding as in above example the simplex computations are performed as follows :

¢ Nowpro 7 .

| Simplex Table
|
| ¢ — '
BASIC Ch Xi
VARIABLES
0 7
X
X4 0 12
Xg 0 10
X=X =X z'=0
l —
«X 0 10
X3 3 3
X 0 1
1 xl=xz=x5 Z=1150
% -1 4
Xy 3 5 |
X6 0 11
=11 orz=-1 |-

=4,X3 =59

Thus, optimal solution is : X7
! Alternative forms of Examples-: t

(0Min.z = x, = 3x, +2%3 sub‘]éct a

(ii)Min. =Xy — 3)C3 +2x5 subject

0 :3x X2 T4
he constraints :

+2x3

S 7: = 2“:1

+ 4.\‘2 Slz . 4xl

Xy 2
+3x, +8x3 <10andx; , X3 » X3 20,

o Xna e Xe 200
+x6=10mld.\p~\2y--' 6

. i ducing those which
o i ollow a policy of pro
T . jillires products IO:f imum sales requirements currently, these
{ f143xy —xy +2x5= b A manufacture” 0 g phituien e
. . rof
ExamPle 6 (Bounded Variables Pmb:z,rn)ther 215 also apolicy ;
ronﬁnue ] rofit. Howeven X,
) et f Xa . t and the total times available for each
= 3 it departmen
Product: s in hour per unit in each dep
: ime
Th Units per week oments. The product!
. Ereare th ducing depar
heof « ree pro
bineach department are :




Total hours availy,
3

ompany has scheduleq -
o

9-00a , hat it should be;
e 10-50, RS- arere 2it is not, W :

CisRs 1070 L youdr® itz difi . e answer 10 (i) abo ,

The contribution per unit of product X1 X2 33 thefoﬂowmg“eﬁt oint of e‘t}[:z’facj?lities (following 1 Yk

pr oductio

Xy, 30 units of X 5 and 60 units of X 3 for pr oductior :::1 one froma P |
(i) Whether the present schedule is an OP"”'[; 1o the firm abow!
(ii) The recommendations that should be mace
: WS v pee
Solution The formulation of the problem i asblecl?;o the constraints: s 2 420
Maximize 7 =10-5X, +9X, +8X3, U '(1).25)(1 $020%, % ISOXB <1048
0-30X; + -40}){( X '25 j 529 ,
30 ' >60. i s
0-25X, :00 g SZXZ 530,0< XBIT st, produce maximum of X, limited by fiy
0 5)r(n, . ' nd X it shou])c}, ﬂ; 668 This can be handled quite easily by Introducy,
Since the company is already producting minimu 2> 20 >30,43 =%
blem, i.c., X3 2 2Vs 42

constraint. Lower bounds are specified in this pro
= 60 + JC3 .

the new variables x, , x, and x such that
{ X, 3 x,=20+X1,X2=30+x2'X3

now becomes : -
Substituting for X, , X, and X 5 in terms of x; , X2 ,x;.theprot?lt;m' 0.25x, +0:20%; + 0-15x4 <400,
Maximize z =10-5x, + 9x, +8x, + constant, subject f0 - s<.500 andx; 20,x,20,%3 2 0.
0-30x, + 0-40x, + 0-50x; <1000,0-25x, +0-30x, +0:25%3 = ih (}'nthelusual manner.
The students may now proceed to find the optimal solution by simplex methoc1
Example 7 (Product Mix Problem) For a company engaged in the manufacture of three products, viz. X, YandZ, the avalil

data are given below : ‘ .
Minimum Sales Requirement

Product: X Y Z
Min. sales requirement per month : 10 2 30
Operations, Required Processing Times and Capacity

Time fhrs.) required per item of
Operations 7 ]
o 7 T Total available hours per month
1 1 § it
: 2
2 : . 2 200
i 3 i -1 220
) .
Profit (Rs.) pe”lm't\L 180 ponsidl
Product: X Y )
4 Profit (Rs.)/unit : 10 15 <
Find out the product-mix to maximize profi. 8
Solution Letx, yand zdenote the number of units produceq e
Minimum sales requirements give the constraints : y > 10 l; o or the Products y |y
Operations, processing times and capacity lead to th e 0,22 wh - andz, fespectively
e follow; L Rrex y L
X+ 2y + 22200, (j) %+ & Constrajpty . AR g
The objective function is : Max, P = [ 4+ 15y +8; .Thy S22 (i)

Max, P =10x +15y + 8z, subjectro);+2y+2z<200 ;Wchave o solye
=00, 2x 4

OSXZIO'QSI)/Zzo'OSZZ:;O. y+25220
Let us make thesubsmullons:x=a+|0,y=b+20 i i
Substituting these values in the objective function un,dz =¢ , and




Ak

< - y - -
-~ 4gTHOD : THEORY AND app,, =
,‘ 5|MPLF'XM LlC‘mONS -

SMXI25 >:|[

‘3 reazo’b-ZO,CZO. .
“VheSo]Ving this problcm by S]mp]ex me[hod

e

e A s b

3a+1 -
0+ (b+20)+2(c+30)$180

We get the Solution: g = 10,5 =49
» b= an

A 0410220,y =40+ 20~
" =107 60,220430. 5,

d ¢ = 0.Substituting these values, we find the original

» and th . . ) _
=Rs.1340? Maximum value of objective function is given by

< 20 unit
Nooh’s Boats m s fX,60 unj
| gsal Ied?wtion is consrraine;k;s lhre'? different kinqs of b 801 Y, and 30 units of Z 1o get a maximum profit of Rs. 1340
ponthy p;t’?! of boats that maximizesy ]I‘-he limited amoyp, of labzzis' All can be made profi ably in this company, but the company’s
mmbl"”" 1S revenue in yigy, of the injg:noofi ana! screws available each month. The director will choose the
1 Input ‘ Row Boat ——_JOIMation given in the Jollowing table :
m . —*‘Tz\‘——ﬁcanl Keyak Monthly Available
| d feet) 7
wood (Boar 22 9 1.260 hrs.
Screws (Kg) 2 18 16 19,008 board feet
F . _\
selling price (in Rs.) 4,000 > 4 3 396 Kg.
,000
(a) Formulate the above as a linear prog 5,000

. rammin
() Solve it by simplex method. From the 8 problem.

(c) How many boats of each type wil] pe
| (d) Which, ifany, of the resources are n
(e) How much wood will be used to mq

Opt;mal table of the solved linear programming problem, answer the following questions :
produced and what will be the resulting revenue ?

ot fully utilized ? If so, how much of spare capacity is left ?

ke all of the boats given in the optimal solution ?
golation (a) Letxy, x, and x;

Y peformulated as follows :
Max. Revenue z = 4,000 x; + 2,000 X5 +5,000 x5,

be the number of Row Boats, Canoe and Keyak made every month. The linear programming model can

; subject to
12x; +7 x5 +9 x5 <1260, 22x; +18x, +16 x4 <19008,2x, +4x, +3 x5 <3%6and x, x5, x3,20.
(b) Adding slack variables sy, s, , 55, the above formulated problem becomes
Max. z = 4000x; + 2000x, +5000x3 + Os; + 0s, + Os,, subject to :
12x) +7Tx5 +9x3 + 5, =1260,22x) +18x, +16 x5 + 5, =19008,2 x; + 4 x, +3 x; + 55 =396,and
X1, X3, X3, 81, 89, 53 20.
The starting solution and subsequent simplex tables are given below :

C— | 4000 2000 5000 0 0 0
BASIC Prog. Qty | i : : - : Replacement Ratio
VARIABLES CBg Xp X X, % o 5] S min (Xp/Xg)

51 0 1,260 - 12 7 9 1 0 0 1260/9

5 0 19,008 2 18 16 - 0 1 0 19008/16

53 0 396 2 4 3 ]-1-=0 -4-=0:==—--- 1--d-——-394/3¢

2'=0 —4000 | -2000 —5%00 0 0 ? : — AER)
A
5 o | 2 k6]--p--5---- 0--4--- o ST T - e
52 0 16.896 34/3 -10/3 0 0 1 -16/3 1491
198
3 | 5000 | 132 2/3 473 1 g g , 01 (fm
7= 660000  |-2000/3 ~14,0t00/3 0 1 -y

x | 4000 12 1 -5/6 0 1/6 0 -1/2

l t 55/9 0 -17/6 | -1 - 13
5, 0 16,760 0 |

| 0 17/9 1 19 0 23
o | soo0 | 124 0 400073 —5350
000/9 0 1000/9 =
=465000 | O 37,
z=0,

. J . — = O and Xq = 124
(Smce o Aj z O, e Optimal SOIUtion ls gll:,ent:‘) 21,;:& ]—2;2;{;)2’0]6 boats or?ly- The maximum revenue will be Rs. 6,68,000.
©) The company should produce 12 Row boa

++v is 16,760 board feet. g
(d) Wood is not fully utilized. Its share capacity 18 y the optimum solution is

jvenb
() The tota] wood used to make all of the bo_at; 2gl>:’T2 ) 65124 = 2,248 board feet.

»



SUMMARY OF COMPUTATIONAL PROCEDURE OF SIMPLEX METHOD
Simplex method is an iterative procedure involving the following steps :

Step 1. 1f the problem is one of rf‘ﬁnimizalion, convert it to a maximization problem b

z=-max(—-z) or minz=-max.(z'), 7' =-2z.

Step 2. We check up all b;" s for nonnegativity. If some of the b;' s are negative, multi
order to ensure all b; 2 0.

Step3. We change the inequalities to equations by adding slack and surplus variables, if necessary
Step4. Weadd artificial variables 10 those constraints with (2) or (=) sign in order fo getthe identity basis matrix

Step 5. Wenow construct the starting simplex table (see Table below for all problems)
be read off.

Form of Simplex Table
C] - €y C G » ¢ ‘
‘ k e Coutn
ASICVARIABLES | Co X5 | X X,y X S

m+n
=CyXy 4 A, A, A
_ k

Step 6 We obtain the values of A; by the formula A; =7 _ o _ &y

tep 0.

; : : J
mutually exclusive and collectively exhaustive possibilitigg -

y considering —, instead of z, using the factmin

ply the corresponding constraints through by -1

. From this table, the initial basic feasible solution®”

& . T
§7¢j» and examine the valyeg of A ; - There yill be |

-




FLEX METHOD : THEORY AND APPLIC ATIONS

S ol

oM .
. 1A; 20.Inthis¢ : :
(” g\;n1e]A ; <0,and f;se‘ the basic feasible go)ys:
(ii) d e Fatleast ong of gy e HON UNder oy i) be optj
jii) Some A <0, and all the coppggr ' “OMEsponding X, o1y o CPumal.
. 16 : . ondj 'e a F : . .
POV MERKIS possible, ponding X;'s have at lcajs[ o *rj < 0.1n this case, the solution will be unbounded.
- Further Improvementis done by ropq 7 ONCXxy > 0.1n this case, there is no end of the road. So further
Wl he following rules to select such g chm‘\g one of the vectors g T
() To select “incoming vector”, We f; - present in the basis matrix by that one out side the basis. We use
will be X T such vatue of i oy which A, = mj
(i) Te Select “outgoing vecop™, The vecy : 'Ax =min A . Then the vector coming into the basis matrix
ratiorule Or going ouy of the basis matrix wil ; ..
. gy _ xwill be3, ,if we determine the suffix r by the minimum
- 10T predeterm;
'e now construct the next i T med value of &
aadl el nextimprovement gt .
Y Now return to Step 6, then go (] Able by using the simple matri .
w o No » gothe steps § ang 9, Ple matrix transformation rules.

\OTE Allthe steps of simplex algorithm can be e

Y remembereq by the Flow-

Chart given below

FLOWCHART FOR SIMPLEX METHOD

if necessa : )
.ry. This process is repeated till we reach the desired conclusion.

Tswis3

solution by matrix
transformation

z‘;:g’e ‘I;P P in Find the initial
ard form [T basic feasible
solution.
A
Construct the
starting simplex
table.
Update the new Compute
simplex table so ¥ Dj=z-¢=CgXj-¢
obtained and examine ?
Find key element Solution
and obtain the new under test

is optimal.
Stop

Select the row
corresponding 10
min. ratio fo find
the vector leaving

the basic B,

Solution can be
improved.
Compute the ratio

ﬁp X,P‘U

5

_____‘.;_———-—;-“

——1

Find the vector x;
entering the basis B
so that
D,= min D,

Corresponding
to any D, <0, arc all the
clements of entering
vector Xy <
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Sensitivity Analysis

nanges in the objective function.
ariations in the requirement vector.

p2 ©

V
12.3
9.4 changes in the co-efficient matrix.

12.5 Addition of a variable.
12.6 Addition of a constraint.
12.7 Ilustrative Examples.

|
‘111 INTRODUCTION.

Ina practical situation of solving linear programming problem the
\dkments of the co-efficient matrix A, the components of the
eirement vector b and the cost vector ¢, called the input parameters,
e peither known exactly nor they are constant for a model for a
fspe_c'ﬁEd period. Thus it is important to know how sensitive the
?:s?::ij solution is to small discrete changes in these parameters. By
2 deterer?fs-s we mean fulfilment of the condition of optimality as well

ining the limits of variations of these parameters for the

Ylug .
M0 remain optimal feasible.
We
shal] Study the effect of changes in the

) ¢genpe:
efficiente R !
0 Cients (¢;) of the objective function,

Ese .. _ _
n""‘ba;ic\,Co-efﬁclenls may be of the basic variables or of the
; drableg
(“’Co )

Mponen«
lij) NENts of the requirement vector (b),

iCien(e b
0 €1ents (a, ) of the variables of the constraints.

hy t\e
ﬂ»b_ Co.
ef ‘..\ LE X T Y -
e, ficients may be of the basic variables or of the

&) ary;
Yy dblC\_)

e
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LINEAR  PROGRAMMING

= © another nype of modificauion in the linear Pro

mod] = which i Ming
n)2new constraintis added 10 the set of origing] Constryj |

v) 2 new vanzble hecomes necessary to the origiy

Thrs Baprens 1f the original formulation be unfnmn;

he model simation is changed. Thege h

al basic solution of in tth :

ms Qr
-‘] fﬂnn an

BT Ny By N s SRy
A UL U

]
i
r e
£
(47
4
LJ
8]
=
-~
—
-
p= !
-—
=
fo B
=1

S
v el it

. 2 g .
Laaaad Ul Ui

3 R 12nge 1 the Optim y \'algts
og both. Ut
The diccussion of how sensitive a given optim
el of vanons discrete changes in the input p

al solution IS, as 3
‘ arameters, i Usually
r with the mvestigation of hoy
ters affect the optimal solution js called
hvsis. Sensitivity analvsis reduces the additiona)
2l effort which anses in selving the problem anew.

L b » - = b -~ ~

cukd semsunwy aralvsis. This togethe
- - -

~ - >ag

CaEZas | he mput parame

-

mar onomal ana
N id- &d.n- e Ak dam

w\——qrw:'; B
-
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122 CHANGES IN THE OBJECTIVE FUNCTION.

When changes are made in the objective function only, the optimal

sotznon s still fzasible as the feasible region remains unaltered.

Letus

)
-

consider the change in the objective function when the cost
ozcomes (¢, + §,). This cost co-efficient may be associated with
S DOT-DASIC
Y

asic vanable or it may be associated with a basic variable M
optimz] solution.

}‘E' e

-

(1) When ¢, is associated with the non-basic variable x, .
Letx; beanopumal basic feasible solution to the L. P. P
Maximize z= cx
subjectto Ax=b, x2 0
znd l21 B be the optimal basis matrix. > il i optim“'
Let ¢; be the cost vector corresponding (o Xp - For u-“c is 1o
solution, L — ¢,> O for all j. If §, be the change in ¢u then B8y

Ph’ﬂ

: change "
changed as ¢, is not in ¢ As there is no p

Alive
: : -negatt ¢
L= ¢ = ¢y, — ¢, will remain unchanged and non “l“ slutio™ ar
5 . . > 1 : S(
Dasic vectors a, comresponding 1o the current (‘P“"”b i ""‘w[&l’
p - ) OI]- ﬂ:’ I
{ 2 — ¢, ) wall change. where ¢, corresponds to the 0 G pold:

- - . -~ \ .
Hence.  for allj. the inequality z,- 2 0 il

jain opt

- 9 - - \n
L= Lo+ 8;,)2 0. Hence the optimal solution to T¢

8(-_(“‘

i — <4




SENSITIVITY ANALYSIS 451

i he cost ¢; of any non-basic variabje X; be increased by more
e amount (2= ¢;), then the resulting (z;— ¢;) will be
h e and a few more iterations w
pfﬂ‘

n~-L optimal solution.
et

\ote that the cost of any non-basic variable can be reduced without
i, without affecting the optimality of x;, .

1 il be necessary (o determine the

(i) When ¢, is associated with a basic variable X .

As ¢, is changed to (¢, + 8,), let the optimal basis cost ¢, be

thanged t0 €'z €5 being changed, all ( z;- ¢, ) will also be changed for
1 41j corresponding to which the vectors are not in the optimal basis.
| Forthe vectors in the optimal basis, z;— ¢;= 0. Let z; be changed to g

J
comesponding to their change in ;. The solution obtained will remain

. optimal (maximal), if z/ — ¢; 2 0 for all j corresponding to non-basis

(5

- veclors.
Now.let €3 = (Cyy,Csa s o 0is e o Chisti el =ts s Cm)
sothat ¢5'= (¢, ¢y, ..n. .. P O YR ,C)
= (], c b 5 CYy U , ) +(0,0,..... 5 Op L, ,0)

A being

= CB+ Bllk’

the unit vector with 1 as the k-th component.
Now we know ¢z B™'a;= 7 and B 'a;= y; ; therefore
’ ' - -1
ZJ = CB B laj= (CB+ Sklk)B aj
- -1
=czB7'a; + § Ly,

—

= i+ §y,;, with I, as defined earlier.

4 14 - . o o . >
o % the condition Z;— ¢;2 0 s equivalent to 7+ Sy — €2 0,

0ot in the optimal basis. This is the same as to say

Hep — (3= )< By ik .
feasible(ﬁf the obtained solution will remain optimal (maximal)

&= G) 5 fory,> 0

Yk
ol Zim Cid

> 6, foryy < 0.
Yij
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These two can be combined to write

: &y = € & e P g
Min| = L—24, y,< 0 |2 § 2 Max| - 225
'\ L ""[ ' _\"’ - (l ()
J v LY ..)

for all J, for which a; 1s not in the basis.

If §; lies 1 the range as given carlier, then the solujo,
‘ femaip
ding

optimal. If §; falls outside this range, then at least one (2, - ¢y
“ () ) Wl”l)c

negative and the solution will no longer remain optimal
If no y > O, then there is no lower bound of &, and if noy,
: : <,
then there is no upper bound of §;.

12.3 VARIATIONS IN THE REQUIREMENT VECTOR,
We know that z;— ¢;= ¢z B~ ‘a;— ¢;. So the factor determining the
optimality condition does not depend on b, the requirement veclor
Hence a change in the vector b by an amount d (positive or negative)
does not change the optimality of the solution. All that we are to check

s RS . . -1 |
is the feasibility of the new solution, as the solution Xz = B bwillbe

changed by changing b.
Consider that we have found a solution x, of the liner
programming problem
Maximize z= €X,
subjectto Ax= b, x2 0.
Then let the i-th component of b be ch
(positive or negative) so that the new i-th compone
b= b+d (i=1,2 ... ,m),
that is, in vector notation b= b+ d, where 31
d=(@,0, ..... di, 0, ... , 0). of the ori‘é'“B

If now corresponding to the optimal basis Bhe e
problem, the changed problem has a solution with t

represented by X, then
x;= B 'b=B'(b+d)=B"'b+B
Hence feasibility of the new solution will dePf"d 11 be O e
(z,— ¢;) is independent of the requirement vector, Xg ¥ ore XA Wdﬂgw

if it be feasible. Now if X, be not feasible, then 0n¢ o 4 the
method 0 fif

o

d
anged by an amount &
nt becomes

1
_|d= x8+ B ’Id-Als
on s

e"pum

negative and we can use the dual simplex
optimal solution.
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- . AV 4
ow B iS necessary (g o, !
Now ! s fevigad g Xp fro
pplying the revise Simpley | hod
b p erform all computatiop,
Wwe

h O the g2 S Obtaineg

ON the ¢q, PIeX methoq

ik ré mng wh: after
Arix used L0 obtain (he Ntia] b, Which

Nt e " &

[oll‘"ms of A be so arrap

:

s1C
ged thay t, f
he basis matrix, then

. olutig If
Irst oy of its ¢q now the

B-|= [YI! Y. Yy, .

...,.,ym]
* 1 * m
imd  Xp=Xp+ B d= xﬂ*‘j%l‘# Y
m
that is, IB‘: xB'_+.Eldj Vi
J:

When only ‘one component of b, say b, is changed, then the j-th
basic variable of the new problem is given by

xp; = xg;+ Y di
B-!
Where y is the (1, k)-th element of B™".
i ust have
For the feasibility of the new solution, we m

it yu di2 0

Md2 - T ey s 0
Yik
and ¢ *Bi 0.
S - — lfy,'k <

ylk

-h that
in by, such
Thyg if we choose d,, the change 10 %

; Max {- ;’; i yik <

| Yix> 0 i

‘ - m

‘ l};{.n lhe N . lution wl” e
Urrent optimal so

. AtiVe
. > Objebu‘
t}k‘ior lhe change in the value of(ﬂ[];:'-{' dA ):
- iy when b, is changed t©

ain feasible-

tns gy X, .
N2< G B 'p= Cg Xp

\
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124 CHANGES IN THE CO-EFFICIENT Mprgy,

If one or more of the elements of the co-efficjen,
changed, then the problem becomes complicated. If wmamx Ay,
clement from a column of A which is a basic vector ine chﬂ"s u
solution, then the optimal basis matrix is recomputed : 55 alht: oDt
columns of A corresponding to the current basic Vafii;bles
lincarly independent or may lnot be independent. Evenni]?}'[hrcmam
lincarly independent, new B~ as well as y; and (- ) mc:):

Tesult the

computed afresh.
(i) Suppose we replace the vector a;; a non-basic vector of A
making changes in one or more elements as given by "
5& =a+
where the vector o is of m components. As a; is non-basic, the optimz
basis matrix B remains unchanged and hence the quantities

Xp= B~ 'b, ¢ and z— ¢;= cgB 'aj— ¢; forj=k

remain unchanged. The only change will be in y; given by

Yi= B‘|3k= B™' (a,+a)= B 'a, + B'a

- y‘,+ B—la.

Again in this case
Zi— =B - o= ;B! (ay+ a)— &
=cyB'a,- ¢+ BTl
=z—-c+cyBla.
ainsoptimﬂ_f

Now if z; — ¢, 2 0, the present optimal solution rem =
al solunon®

butif 7, — ¢, <0, then y, is to be computed and the optim
to be found through few more iterations.
. e the ™
For a single change & in a, in the /-th element, we have &
element a, + &y

and hence for the optimality of this solution, we must have

(_'”ll—l(u‘.’- 6“1')—' ('12 0

where Iy is the unit vector having | in the /-th position.

> |
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§ -

'J\
tn

-.condi‘m" implies
‘['hl.‘v m
=

' - P » 2 —l 1 .
pere Vi (s (he element of B~ "in the i-th row and /-th column
: Hence gimality and feasibility will be maintained, if -
Azn— Ck) :
Lk k - 7t
( > 81&-2 Max (*k (“)

Mm m i m
! J z Vil Cpi <0 i?})’,‘; Cpi |> 0

|'=|

_existent denomi : .
for a non-ex1 inator the corresponding bound will not

§ 1exist.
(i If the change in elements be desired in a vector a, which is

}basic, we shall first remove this vector from the basis before giving
-y change 10 the elements of a; and then we shall make the desired

 thnge in the presently obtained non-basic vector &
In this case we can otherwise resolve the pro

keginning or recompute B ' all y;and (3= 6 ).

blem from the

BLE.

ariable has be

be desired to 2 ‘
| and having the pnice

rogramming

15 ADDITION OF A VARIA

f°ﬂll£ulllatbe seen that somehow 2 V
™ lon of the problem and ¥f it
. with the associated activity Vector a,.
| 1to the problem, then We can restate the linear P
;

en left out of the
dd a new variable,

| Maximize z= €X+ Cn+1 i 1
subject to [A, 8+ - At
md‘ Xp+
ﬁ“"ﬁ | T X2 10y Tty ; lem, then it
Wy X be the optimal solution t0 the origl:li‘;tsr bnjg:;:m with

he - 2 bas; : . ,
N sic feasible solution to the new
. i curTe ly

)
¢
|C' gh W va .
| n ) :
'S Utigp able x,, , being z€ro: since 1t 15 :
2 3 . . m, 1
g1 Will be optimal for the neW Pfople L2 o
hee "+12 0 Ao oforalli= b T ) )5
! e ddition of a new variable which 18

e.
TLb \E dre not
Wje changed by the @




486 LINEAR  PROGRAMMING
Now computing 2z, ., | - oo 1= B-
n + ' .
LR | lf i b“
to be negative, then we are to ¢ ’ = R- =
g calculate y, | =B 'y nd

with the simplex or the revised simplex melhod SO thal .
a
in the basis. mepls bm“ghl

12.0 ADDITION OF A CONSTRAINT.

The addition of a new constraint to the constrain
problem means the addition of a new variable (s
associated with the new constraint.

Let the constraint set be Ax-= b, x> 0. Let us add , new
constraint to this in the form

m
Zlanol;'}‘}"tn-l:bﬂ*l (l)
}—

t set Of [he g“m

where &, 1 is a slack or surplus variable (hence c,. ; = 0) added to the
new constraint. Thus addition of a new constraint means addition of 2
new vanable. b, . ) is not necessarily positive as the added constrait
may be either of the “less than™ or “greater than” type. If the curres!
optimal solution satisfies (1), then it is still the optimal solution sioe?
the objective function is not changed thereby ; otherwise we shall h?-\:‘
to find the new optimal solution for the new set of ( m+ 1) equaic=
consisting of (m + 1) basic vectors.

12.7 ILLUSTRATIVE EXAMPLES.

-*;3
EX. 1. Find the limits of variations of the costs ¢, € €x» G % _;'
op
¢, respectively for the linear programming problem uhoS:m Z
table is given below, so that the optimal solution remains 0p!
b 1, SO 1€ Op /
: o ’ | 0
¢ | B | xs| b fa:,?a_a!_a:__;_i,_,/
1 1 3 ' ! (~17] 2 p.f
= 1.4,.= | X Iz § suie ' 1 { 0 { 10 | ° 0
i { A i | 2
.g | | | | I
3 1 a; : Ay ] 6 i % : 0 1 1 ,l-E’ : - i
0 a . X 8 i ] i 0 | 0 L _,_l ]U 7 -4
_-\%_\ | = { ‘

I

|

.:\
e

=]

<
R N Y T

LV ]
\'
L ,
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From the tableau we see that the optimal solution i
. 10N is

r = O, Xy = S X, =
.‘[ - 7 3 ()) X.J: 15: 0‘ _\’ == Sand - .
b “max — 13

We notice that x,, x,, x; are the non-b
ableau. Hence the permissible limits of
which are 8;, 0. O respectively, so th
op(imal. are given by

asic variables in the optimal
the variations of Cps sl
at the above solution remains

6|S Z]_ CI’ i.e., SIS 6
5’

SJS Z,— C4 le., 84S %

b

Now we find the permissible limits for the variations of ¢,, ¢, ¢,
«hich are the costs corresponding to the basic variables x,, x; X
By the formula we have, for 8., that is, the variation of ¢,

1
|

Z,— ¢ . zi—C

Min | - L—2 v, < 0[|26,2 Max | — J——’—J y, >0
,Vz, o .‘2}

. forall j corresponding to non-basis vectors. From the tableau we see

that

ond row corresponding 10 the

for g
b, these are the elements of the S€co We are to consider those
lariable x, associated to which the cost 1S & & = 14 5)
’ hacis vectors (J= L Ok

for which j corresponds 10 1h:: non basts

that ; is,| = 7o '
utl“v(_\._lv Yags Vas ), that1s.} 5 0" 5

)

. 1 O €
e . e eorresponding
Jimilarly, for &, , we consider (corresl

: |
¢ e | ’ ﬂ
(Vi Vg Vs ), thit l.\.[ 2 10

IH;] frrr & . ot d”‘” 1o “")
TO, . we consider (corresp -

_ EREY
(V" Yias “ Vos ), thatl '”'( S )
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I'hen applying the eniterion we have

) 6O _ gl |_7
- N “» , 1 __S 5 5-
oo (NS NO V= 0) = O, = Max 2 “J_.’ —
510 5
(". o0 P4 ‘\.- -“. - _v". :
=8 407
. » = - . 5 5 5
Similarly, = = 8, = Max N i, 2
5 10 5
N N
° 2 5,2 -3
.ﬁ ~ 5 5
and N > 5.2 Max| -5, ===
and Min N 2 =
. \\ ~ " \ = 'f!
) .‘..., e S

Varatons in ¢, ¢y, ¢, by amounts specified by 8,, 8, & as given
above will not disturb the optimality of the present solution.
Ex. 2. Find the optimal solution of the L. P. P.
Mavimize 7= 4x,+ 3x%

subject 1o x|+ X, S

Show how to find the optimal solution of the pr oblem. if

ent vecio
() the first component of the original reqmr;mrmm[ b
: ; ; ec
increased by one unit and the third component be

untir ;

r he

)] |

g vector §

. ol remel
(1) the second component of the original reqit

decreased by nvo units. [ [W-’-l
[ Calcutta M. Sc.. 1985 ; Vidvasagar it

) ) )""tr‘ \
(1) We add the slack variables 1., x, and v (0 the €€ ‘I

bas SIS w
apply simplex method to solve the problem. The initial na nlll”‘
(%
given by the columns a.. a, a. Fasily we get the opti!

from the wble as given in the next page
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Gy 4 ) () () ()
S, i FUE———— '
u l—T1 . , y | -#]
e Iy | 0 | - - 0
‘ | 1 0o | - LS
n Al 2 2
‘ | 0 0 -3 | I
{ q e As 2__4 2 "
V| —— ==
- y— G 0 0 5 ; 0

mn—lbasis inverse, that is, B™'= [y,. y,, y,], for these
¢ N )
s afforded the initial basis.

= (3 1 .

B": ly]‘ y‘. yS]_ _i __2_ 0
1 1
3 1

L—E 5 1-‘

Now the requirement vector b becomes (b + d ), where d is given
wd= (1,0, = 1).

Thus }5:: x;+ B"d

J

r~ F 3 1
={41+{ 7 -3 O] !
L e e i il B
! 2 2 e
5 1
B B - - ot
o ) 1
4|+ e[ o
| =l |
! 3 -
h b 5
2 T3
Ty L ] 1 |
)
; € s y |
I8 ]‘lﬂ' that the new optimal solution 15 not feasible as
o - . \ ‘
) *I‘y 1 th : d“d lg B - s (\IJLk \.lll.d\l"' '!\‘”\ e WEe ure o le‘: [h‘:
iv ) 2
Ll |
W, Smplex method to find the new feasible solution
‘t“tt‘”.
thyy
yWill enter the basis and o, will leave it




i

e new tahlde s

B AN
&
LANEAR  FROGEAMMING

BN By o
i Tl o0 1 MR % . " “ ‘ %“N\
e nur~em Besany 0 0 T~
s | i v b A Y, ) 0
. i p ",‘ &.. ;.»
i n i \ B { | 0 ‘| ‘\
4 i a ! \ l 2 ‘
, | ! 0 0 11 .
? ' ' :
0 ! = l 1 | 0 0 | '
| B =y | -4
[ R Y (] () () l “._.iﬁ
The new optimal solution s thus x, = 1, x, = -1'1\ml t = 1§
Smay !
() Hered = (0, = 2, 0).
e e bdafa)e| 3 -1 o[ o)<[s
| | 1ol 2 0
| 2 2 0 0
-3 L VO
2 2

..

Hence the optimal solution is x, = 0, x,= 5, Zux= 13

Note. It should be noted that a change in only one component of the requirement
vector may change all the components of the optimal solution.

Ex. 3. The optimal simplex table for a given L. P. P. s given
below : |
c 4 3 4 6 04 0|0
s | I xs [ by [ B ¥ ys | ¥ | ’ljf
N s | 1
| | 18 14 4 1=
o X : A - { 0 I 0 | T 13 I:
| |
1| W)-5
‘ ’ &0 23 o 3
tia}n | Blo -5 |0 B "
| S ? |2 @
} 28 16 il i e
' :; iv !3
ol Bl Bl A R i U I ”’T/l
i 3| O e ﬁrrﬂims
The given problem is a maximizing problem with all the
"< npe. aﬂd
) s Oaai V8 !
Determine the separate ranges of discrele changes " ¥
_ ' £
M. O

yy
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s from the
y is obvIoU frd the optima] table thyy ,
¢ associated wit 2 s Xy X, are the slack
"sﬂ“bb - - h (ht_ g'_‘en constraings mt h Pl
ince [ Bs a, . 8, ] gives the innjy basis matrix ¢ problem ang
* 7B be the optimal basis, then ‘
- .: q N
-1 . 2
B = B 13 = |-
13 1 1= (8 -
—J- l-l. l?. [ (I} 6: N 0; ], (5‘!‘\,
13 13 13
N IR 6
13 1 IE)

3
Now €gd; = 6({{ )"' 4(
Cns;z (’(*“ﬁ )+ 4

,
Fomd o= o(i). 4(_l)+ 4(& )= I
i 13 1 KN E
. Now a,. a, a,, are the elements of the vector a, which is
wn-basic as is evident from the optimal table. Thus a change in a, will

. wly violate the condition of optimality. Hence the range of discrete
| danges in the coefficients of the vector a, for the optimality of the

- - - I7
. fesent solution is given by ( - Q= n )
-

& ! i« change i > =l 4
i < change ina,, , that1s, changeina;2 —1¢
0
s 17
| 3 1 ’ 1 I 77 2 g= ==yt
1 S change in a,, , that s, change In a:;
3 n
- ITZ . 5 AT
iy in & i Bz ="y
£ S change in a,, , that1s, change m dz: g
n 32 |
:i=ali em (with
- Buygg : : ble for a piaximization probl
X }“Uro - The optimum simplex 1a
i 'I.T ; sé_ & ~ﬁ*-q=ﬂ.
. f\"tlis <" hpe) is gty D —
/gt : ‘ s §
” i‘u L |
]
2} oA
N
r1 x\\“h a!
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where x4 is the slack and xs is the artificial varigp)

variable xo 2 0 be introduced in the problem with q . €. Let 4 ney
- . . . i "0

to it in the objective function. Suppose that 1 118 aSSigneg
: . e

corresponding 10 the variable x¢ be [3, 2). Discuss the f}few
€Jfect

addition of a variable on the optimality of the opti
1] .
given problem. ptimal solution

veCfor
of thig
Of the

x, and x; being the slack and the artificial variables, |
constituted the initial basis. If B be the optimal basis, then W

B '=

W= N

Let a, be the vector corresponding to the variable x; .
3 |=
2

The cost vector Cg= [12, 5] as seen from

—

Yo = B 136=

wmixwnis

wnin n|—

the optimal table and

¢, = 6.
Nowz,— ¢,= €¥e— C= [12 51| 5 |~ 18= -1<o0.
' 1
5
: . ¥ ble
Thus the optimality condition is violated and the new simplex 1
IS , )ﬂ
b
Cp B b yi Y2 Ys Y4 ""’%L//:‘
8 1 2 — 5
12 a, 5 0 ] 5 s 5 7
b) -~
3 a J 7 1 = 5
rEERUE
0 0 - - A/j__ |~

We see
see th: . . ,
at a, enters the basis and a, leaves the basis.
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h new Si“]pllf\ table is
Ihe

- . m.jmm":."_—.t o
%M | T
s

R .

Y 1N | _)u | ‘m"”‘"‘“‘*""‘“

\ T e
C“‘ l '. y4 y' }' : !‘
{ o]

b
. . | \'x
a: \ 7 1
| A i
7 7

smeeall 5= ¢;2 0, the optima] Solution is obtained

Hence the new optimal basic feasible 5ol

ution is
— A — 4 - — 48
X = 0’ Xy = 7 and Smay = El

Previous maximum value of 7 was l‘-;l :
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